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Abstract
Learning intersections of halfspaces is a central problem in Computational Learning Theory.

Even for just two halfspaces, it remains a major open question whether learning is possible in
polynomial time with respect to the margin γ of the data points and their dimensionality d. The
best-known algorithms run in quasi-polynomial time dO(log 1/γ), and it has been shown that this
complexity is unavoidable for any algorithm relying solely on correlational statistical queries (CSQ).

In this work, we introduce a novel algorithm that provably circumvents the CSQ hardness
barrier. Our approach applies to a broad class of distributions satisfying a natural, previously
studied, factorizability assumption. Factorizable distributions lie between the distribution-specific
and distribution-free settings, and significantly extend previously known tractable cases. For these
distributions, we show that CSQ-based methods still require quasipolynomial time even for weak
learning. Our main result is a learning algorithm for intersections of two margin halfspaces under
factorizable distributions that achieves poly(d, 1/γ) time by leveraging more general statistical
queries (SQ). As a corollary, we establish a strong separation between CSQ and SQ for this
fundamental PAC learning problem. Our main result is grounded in a rigorous analysis utilizing a
novel duality framework that characterizes the moment tensor structure induced by the marginal
distributions. Building on these structural insights, our learning algorithm combines a refined variant
of Jennrich’s Algorithm with PCA over random projections of the moment tensor, along with a
gradient-descent-based non-convex optimization framework.
Keywords: Intersections of Halfspaces, Efficient Learning Algorithms, Statistical Query Learning

1. Introduction

A halfspace h = sign(u∗ · x+ t1) : Rd → {±1} is a Boolean function defined by its weight vector
u∗ ∈ Rd and threshold t1 ∈ R. Halfspace learning is one of the oldest and most fundamental
problems in Machine Learning (Rosenblatt, 1958; Block, 1962). While learning a single halfspace
is well-understood, learning intersections of halfspaces is significantly more challenging. Even for
intersections of two halfspaces, polynomial-time algorithms are known only under strong distribu-
tional assumptions about the datapoints x, which are e.g., assumed to be drawn from a Gaussian or
log-concave distribution (Blum and Kannan, 1997; Vempala, 2010a,b). Beyond these assumptions,
little is known about the problem’s complexity. Prior work (Klivans and Sherstov, 2007, 2009;
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Daniely and Shalev-Shwartz, 2016; Tiegel, 2024) establish hardness results for learning intersections
of ωd(1) halfspaces. It is a central open question in computational learning theory whether an
intersection of even two halfspaces can be efficiently learned in the distribution-free setting.

To design efficient learning algorithms in the more challenging distribution-free setting, a popular
approach is to assume that the underlying distribution has a margin with respect to the target
hypothesis; see, e.g., (Arriaga and Vempala, 2006; Klivans and Servedio, 2004a) (see Definition 1).
Under the γ-margin assumption, it is well-known that the Perceptron algorithm properly learns a
single halfspace in time Õ(d/(γ2ϵ)); see, e.g., Cristianini (2000). Unfortunately, a similar result
does not hold for learning an intersection of two halfspaces. Even under a margin assumption, it is
computationally hard to output an intersection of any constant number of halfspaces with an error
better than 1/2 (Khot and Saket, 2008). The best known algorithm (Klivans and Servedio, 2004a) in
this setting, developed over 20 years ago, runs in time dO(log(1/γ)) and outputs a polynomial threshold
function with degree O(log(1/γ)). Such a learning algorithm not only has super-polynomial time
complexity, but also needs super-polynomial time to evaluate its hypothesis on a single example.
An important open question, posed in Klivans and Servedio (2004b), is whether a poly(d, 1/γ, 1/ϵ)
time learning algorithm exists under only a γ-margin assumption.

Specifically, the algorithm developed by Klivans and Servedio (2008) closely relates to the notion
of Correlation Statistical Queries (CSQ), which are queries of the form E(x,y)∼D[yq(x)], where q
is an arbitrary bounded function. The main idea of this type of algorithm relies on the fact that the
target hypothesis can be represented as a high-degree polynomial threshold function, and thus one
can make CSQ queries—independent of the marginal distribution—to obtain a weak hypothesis; a
strong hypothesis can then be obtained via boosting. Algorithms of this type usually do not leverage
useful structural properties of the underlying learning problem, and are hard to adapt to obtain more
efficient algorithms. In fact, even for weak learning, dΩ(log(1/γ)) complexity is the best one can hope
for via a CSQ algorithm. This suggests that, to make progress toward a polynomial time algorithm,
a new algorithmic framework is needed. In particular, one needs to design instance-dependent
statistical queries by learning information about the marginal distribution DX . In this work, we
introduce a novel algorithm that provably circumvents the CSQ-hardness barrier under the γ-margin
assumption. Our algorithm runs in fully-polynomial time for a broad class of distributions satisfying
a factorizability assumption. We now formally define the problem we study in this paper.

Definition 1 (Learning Intersections of Margin Halfspaces Under Factorizable Distributions)
Let V ⊆ Rd be an unknown two-dimensional subspace and W = V ⊥ ⊆ Rd be the orthogonal

complement of V . Let h∗(x) = sign(u∗ · x + t1) ∧ sign(v∗ · x + t2) : Rd → {±1}, where
u∗,v∗ ∈ V ∩ Sd−1 be the target directions and t1, t2 ∈ R are the thresholds of the defining
halfspaces. Let D be a distribution over Rd × {±1} satisfying the following:
1. The distribution D is consistent with an instance of learning intersections of two halfspaces h∗,

i.e., for (x, y) ∼ D, y = h∗(x) holds almost surely.
2. The distribution D satisfies the γ-margin assumption, i.e., for x ∼ DX , it holds ∥x∥2 ≤ 1 and
|u∗ · xV + t1| ≥ γ, |v∗ · xV + t2| ≥ γ holds almost surely. Here xV is the projection of x on V .

3. We say that D is factorizable if DX = DV ×DW , where DV is the marginal distribution of DX

over DV and DW is the marginal distribution of DX over W .
Given parameters ϵ, δ ∈ (0, 1), a learning algorithm A draws a set S = {(x(i), y(i))}mi=1 of m
examples i.i.d. from D and outputs a hypothesis ĥ : Rd → {±1} such that with probability at least
1− δ, err(ĥ) := Pr(x,y)∼D

(
ĥ(x) ̸= y

)
≤ ϵ.
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Throughout this paper, we will use DX for the marginal distribution of D on the feature space, D+

to denote the marginal distribution of DX on positive examples, and D− to denote the marginal
distribution of DX on negative examples.

Discussion Factorizable distributions lie between the distribution-specific and the distribution-free
settings. Specifically, an efficient learning algorithm for such distributions would significantly extend
previously known tractable settings, such as under the Gaussian or uniform distribution over the
unit sphere, as no assumptions are made over DV and DW . Factorizable distributions are not new
in this learning context. The original motivation of studying them can be traced back at least to
Blum (1994) in the context of learning k-juntas under the uniform distribution on the hypercube,
and to (Klivans et al., 2008; Vempala, 2010a) for learning convex concepts under the Gaussian
distribution. In both of these settings, the target hypothesis only depends on the projection of the
points on some unknown low-dimensional subspace, the marginal distributions are factorizable and
satisfy additional strong assumptions. With this motivation, Vempala and Xiao (2011) first formally
proposed the setting of learning k-subspace juntas (functions that only depend on the projection on a
k-dimensional subspace) under factorizable distributions. The original observation of Vempala and
Xiao (2011) was that if there are k directions in V along which the moments of DV are different
from those of a standard Gaussian, then one can information-theoretically recover the subspace V .
However, as we will discuss in detail in Section 3, this approach incurs an exponential dependence
on d and the accuracy parameter. To obtain computationally efficient algorithms, Vempala and
Xiao (2011) additionally assume that DW is the standard Gaussian. Under this assumption, if
DV satisfies the aforementioned moment conditions and H satisfies some additional robustness
assumptions, they gave an algorithm that approximately recovers the relevant subspace and then
learns over a low-dimensional space. In contrast, our work focuses on the original setting where no
additional assumptions are made over DV , DW for the basic case of intersections of two large-margin
halfspaces. In this context, we establish novel structural results for intersections of two halfspaces,
and design a fully-polynomial time learning algorithm. We summarize our results below.

Our Contribution and Technical Overview We start by establishing a quasi-polynomial dΩ(log(1/γ))

Correlational Statistical Query (CSQ) lower bound (Theorem 2) for our learning task (Definition 1).
Our CSQ lower bound shows that, unlike learning under the Gaussian distribution where there
exists a fully-polynomial CSQ algorithm, learning in the factorizable setting is more challenging
and CSQ algorithms even fail to efficiently weakly learn. Furthermore, the CSQ lower bound we
obtain matches the running time of the algorithm developed by Klivans and Servedio (2008) for
learning intersections of two γ-margin halfspaces (even without the factorizable assumption). This
suggests that a new algorithmic framework is required to obtain more efficient algorithms. Due to
space limitations, the proof of this lower bound is deferred to Appendix G.

Theorem 2 (CSQ Lower Bound) Let γ > 0, q, d ∈ N, τ ∈ (0, 1) and d′ = min(d, 1/γ2). Any
CSQ algorithm that learns intersections of two halfspaces with γ-margin in d dimensions under
factorizable distributions to error 1/2−max(d′−Ω(log(1/γ)), 2−d′Ω(1)

) requires q queries of tolerance
at most τ , where q/τ2 ≥ min(d′Ω(log(1/γ)), 2d

′Ω(1)
).

Our main algorithmic result bypasses the CSQ-hardness by giving a polynomial-time algorithm
for learning any intersection of two halfspaces with γ-margin, as long as DX is factorizable. This
implies the first strong separation between CSQ and SQ algorithms for weak (realizable) PAC learning
of a natural concept class. We refer the reader to the related work for more detailed discussion.
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Theorem 3 (Main Result) There is an algorithm that for any distribution D over Bd(1)× {±1}
satisfying the conditions of Definition 1, for any 0 < ϵ, δ < 1, has the following guarantees: it draws
n = poly(d, 1/γ, 1/ϵ, log(1/δ)) labeled examples from D, runs in poly(n, d) time, and outputs a
hypothesis ĥ : Bd(1)→ {±1} such that with probability at least 1− δ, err(ĥ) ≤ ϵ.

The full proof of Theorem 3 and the main learning algorithm are deferred to Appendix F. In the
rest of this section, we give a detailed outline of the techniques involved in proving this result.

Intuitively, the CSQ lower bound of Theorem 2 implies that without learning some informa-
tion about the marginal distribution DX , it is impossible to efficiently find a CSQ, q, such that∣∣E(x,y) yq(x)

∣∣ > poly(γ/d); as otherwise, one could output sign(q(x)− t), t ∼ [−1, 1], as a weak
hypothesis with 1/2−poly(γ/d) error. This suggests that a plausible approach is to first learn (some
information about) the marginal distribution DX , and use it to design instance-dependent statistical
queries. The construction of these queries hinges on the following observation. If we are given a
direction w that is poly(γ)-close to V , then restricted over bands Bi := {x | w ·x ∈ [iγ, (i+1)γ]},
the labels y are consistent with a degree-2 polynomial threshold function. This in turn implies that
a CSQ of the form q(x) = 1(x ∈ Bi)p(x), for some degree-2 polynomial p, can be used to give a
weak hypothesis with poly(γ) advantage. Once we have a weak hypothesis, we can run a standard
boosting algorithm to get a strong hypothesis. With this goal, the question is how to efficiently find
such a direction w. To achieve this, we start with an easier case, where ∥(Ex∼D+ −Ex∼D−)x⊗m∥F
is large. Since DX is factorizable, we show in Theorem 14 that any local maximum or local minimum
of the objective function f(u) = (Ex∼D+ −Ex∼D−)(u · x)m must be in V . Though finding exact
locally optimal solutions for f is computationally intractable, we show that an approximate solution,
obtained by running a standard gradient-descent method, suffices for our purposes.

The more challenging case is when the underlying instance is indeed CSQ-hard. In this case,
a low-degree polynomial function q will also satisfy

∣∣E(x,y)∼D yq(x)
∣∣ ≈ 0, which implies that

Ex∼D+ x⊗m ≈ Ex∼D− x⊗m for small m ∈ Z+. Leveraging the fact that the label y only depends
on the subspace V , we establish the following novel structural property for DV . Our key structural
result can be summarized as follows.

Theorem 4 (Informal statement of Theorem 6) For any distribution D satisfying the conditions of
Definition 1, if for m ∈ [3], ∥(Ex∼D+ −Ex∼D−)x⊗m∥F ≤ poly(γ) and ∥Ex∼DX

x∥F ≤ poly(γ),
then

∥∥Ex∼DV
x⊗3
V

∥∥
F
≥ poly(γ).

That is, for any distribution D consistent with our learning task, if the first three moments
of D+, D− are nearly matching and the mean of DX is close to 0, then the third moment tensor
of DV must significantly deviate from 0. The proof of this structural result is rather technical,
because the only condition we assumed about DV is the margin assumption. To prove this result, we
develop a novel technique which we term one-sided polynomial approximation. Roughly speaking,
if we are able to appropriately construct a polynomial function p(x) such that for some z ∈ {±1},
sign(p(x)) = z,∀x, h∗(x) = z, then such a polynomial can be used as a certificate to show that
distributions satisfying certain moment conditions do not exist. One-sided polynomial approximation
is a powerful tool for proving moment properties of distributions. In Section 2, we will carefully
design these polynomials to prove useful results for the marginal distribution DV .

The next step is to efficiently find a direction w close to V , by leveraging our structural result.
Our initial attempt was inspired by the observation of Vempala and Xiao (2011) on generalized
independent component analysis: for m ≥ 3 if DV has m-th moment different from that of a standard
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Gaussian, but the first m− 1 moments are the same as those of a Gaussian, then a locally optimal
solution to f(u) = Ex∼DX

(u · x)m must be either in V or W . Unfortunately, such an idea does not
lead to an efficient algorithm for the following reason. Since we make no distributional assumptions
over DW , DW could also be factorized as Ω(d) many distributions that are isomorphic to DV . This
implies that information-theoretically we are only able to find a list of O(d) unit vectors such that
one of them is close to V . The natural approach is to optimize f in order to find one direction, and
optimize the same function over the orthogonal subspace to find the next directions. As we explain in
Section 3, such an approach has exponential sample complexity (as also demonstrated in Vempala and
Xiao (2011)). Interestingly, we show that by carefully adapting such an idea, we are able to obtain
an efficient SQ algorithm, which in turn leads to poly(d/γ) sample complexity. Still, it is unclear
how to get a computationally efficient learning algorithm. To overcome this difficulty, we develop
a completely different approach inspired by the tensor-decomposition literature. Though the third
moment tensor T of DX is in general very high rank and does not admit a low-rank decomposition,
we know that the third-moment tensor TV of DV significantly deviates from 0. This implies that
if we take the product of T with a Gaussian random vector v, then with good probability one of
the eigenvalues of TV · v must be significantly different from the other eigenvalues of T · v. By
the factorizable assumption, an eigenvector of T · v must be close to V . Thus, even for the hard
instance mentioned above, we are able to efficiently find a direction close to V . We give Algorithm 1,
a sketch of our approach for learning intersections of two halfspaces, and give the full algorithm in
Appendix F.

Algorithm 1 LEARNINGINTERSECTIONS (Sketch)

1: Find a listO of unit vectors as follows: if D+ and D− have nearly matching first three moments,
run the algorithm in Section 3.1; otherwise, run the algorithm in Section 3.2.

2: For each w ∈ O, run Adaboost with the algorithm in Section 4 to get a hypothesis hw.
3: Return the best hypothesis h ∈ {hw | w ∈ O} via a standard hypothesis testing approach.

1.1. Related Work

Learning Intersections of Halfspaces Learning intersections of halfspaces is one of the central
problems in learning theory. Despite a long line of work studying this problem algorithmically
(Baum, 1990; Long and Warmuth, 1994; Kwek and Pitt, 1996; Blum and Kannan, 1997; Klivans
et al., 2004; Klivans and Servedio, 2008; Klivans et al., 2008, 2009; Vempala, 2010a,b), relatively
little is known about its complexity. In the distribution-specific setting, Blum and Kannan (1997) first
showed that under the uniform distribution over the unit sphere (or under the Gaussian distribution),
for any fixed constant k, one can learn an intersection of k halfspaces in polynomial time via PCA.
Vempala (2010b) later extend this result to isotropic log-concave distributions via a random sampling
method. For discrete distributions, Klivans et al. (2004), developed Fourier-based algorithms for
learning an intersection of any constant number of halfspaces under the uniform distribution over
the Boolean hypercube via Fourier analysis (albeit with complexity exponential in the inverse of
the accuracy parameter ϵ). Many subsequent works in the distribution-specific setting developed
algorithms with improved complexity under the Gaussian or uniform distribution over the hypercube.
It remains an open question whether, under these strong distributional assumptions, an intersection of
k halfspaces can be learned in fully-polynomial time. For the special case of two halfspaces, (Baum,
1990; Klivans et al., 2009) developed polynomial-time algorithms for learning an intersection of
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two homogeneous halfspaces under mean zero symmetric/isotropic log-concave distributions. We
emphasize that the distributional assumptions of these two works are fairly strong and the underlying
algorithms do not work if the defining halfspaces do not go through the origin.

In the distribution-free setting, much less is understood. (Klivans and Sherstov, 2007, 2009;
Daniely and Shalev-Shwartz, 2016; Tiegel, 2024) showed that if the number of halfspaces k = ωd(1),
then distribution-free learning is hard. Tiegel (2024) recently gave an SQ lower bound of dΩ(k) for
distribution-free learning intersections of k halfspaces. However, no super-polynomial SQ lower
bound (or any other representation-independent hardness result) is known for learning intersections
of a constant number of halfspaces.

Independent Component Analysis and Its Generalization The learning setting where the
marginal distribution is factorizable is closely related to the work of Vempala and Xiao (2011)
on an unsupervised learning setting, known as generalized independent component analysis. Inde-
pendent component analysis (Jutten and Herault, 1991), originally considered the following problem:
given examples y ∈ Rd generated by y = Ax, where A ∈ Rd×d is an unknown matrix and x ∈ Rd

is a random vector such that xi, i ∈ [d] are independent, recover the underlying direction x1, . . . ,xd.
ICA is a natural generalization of PCA, another task that identifies the source components given only
their linear combinations. PCA can be viewed as the task of finding vectors on the unit sphere that are
local optima of the second moment of the observed data. Such an approach fails when eigenvalues
repeat and ICA bypasses the difficulty by considering finding a local optimum of functions related to
higher-order moments of observed data. It is known that the original ICA problem can be efficiently
solved via second-order method (Frieze et al., 1996; Arora et al., 2012). Generalized ICA (Vempala
and Xiao, 2011) instead aims to recover the distribution DV given examples generated from a
factorizable distribution DX = DV ×DW . Such a problem can also be viewed as a generalization
of Non-Gaussian Component Analysis(NGCA) (Tan and Vershynin, 2018; Goyal and Shetty, 2019).
However, unlike the original ICA problem, the generalized ICA suffers issues of numerical instability,
and no fully polynomial-time algorithm is known for the problem so far.

SQ Model and CSQ Model The CSQ model (Bshouty and Feldman, 2002) is a subset of the
SQ model (Kearns, 1998), where the oracle access is of a special form (see Appendix A). In
particular, any SQ query function qsq : X × {0, 1} → [−1, 1] can always be decomposed to
qsq(x, y) = q1(x) + q2(x, y), where q1(x) is a query function independent of the label y, and
q2(x, y) is a CSQ query. An intuitive interpretation is that, compared with the SQ model, the CSQ
model loses exactly the power to make label-independent queries about the distribution, i.e., the
power to ask queries about the marginal distribution of x. In the context of learning Boolean-valued
functions, the two models are known to be equivalent in the distribution-specific setting (i.e., when
the marginal distribution on feature vectors is known to the learner) (Bshouty and Feldman, 2002).
However, they are not in general equivalent in the distribution-free PAC model. In the realizable PAC
setting, there are known natural separations between the CSQ and SQ models. Notably, Feldman
(2011) showed that Boolean halfspaces are not efficiently learnable up to an arbitrarily small accuracy
via CSQ algorithms (even though they are efficiently SQ learnable). Intuitively, such a separation
exists because even though CSQ algorithms can be used to learn a weak hypothesis, without using
stronger SQs, we cannot implement boosting algorithms to get a strong hypothesis. Our results for
learning intersections of two halfspaces exhibit a new separation between CSQ and SQ models in the
realizable PAC learning setting, in terms of weak learning. That is to say, under the assumption of
factorizable distributions, it is hard to efficiently find a hypothesis with error 1/2− o(1) using CSQ
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algorithms; but this is possible via efficient SQ algorithms. This shows the necessity of using SQ
queries for PAC learning is not only due to boosting, but also due to the hardness of finding a weak
hypothesis.

Organization In Section 2, we present our main structural result for learning intersections of two
halfspaces. In Section 3, we make use of the structural results developed in Section 2 to design
computationally efficient algorithms that find a direction close to V . In Section 4, we show how to
use the direction we find in Section 3 to obtain an efficient weak learner.

2. Structural Result for Distribution-Free Learning Intersections of Two Halfspaces

By Theorem 2, we know that without looking at the marginal distribution DX , it is impossible to find
a Correlational Statistical Query (CSQ) that can detect the correlation between DX and Dy; thus,
even performing weak learning efficiently via CSQs is impossible. To bypass this inherent limitation
of CSQ algorithms, we need to design “instance-dependent” CSQs by first looking at the marginal
DX . Motivated by this intuition, we provide a novel structural result for learning intersections of two
halfspaces, which we will make essential use of in Section 3 to design instance-dependent statistical
queries. To start with, we present the following (α,m)-moment matching condition that will be
heavily discussed throughout the paper.

Definition 5 ((α,m)-moment matching condition) Let α ≥ 0, m ∈ Z+, and D be a distribution
of (x, y) over Rd × {±1}. We say that D satisfies the (α,m)-moment matching condition if
∥(Ex∼D+ −Ex∼D−)x⊗m∥F ≤ α.

To simplify the notation, in this section we make the following assumption about the subspace
V . We assume that V , the subspace spanned by u∗,v∗, is exactly equal to span{e1, e2}. Such an
assumption can be made without loss of generality, as applying a rotation transformation will not
affect the γ-margin assumption. Since the label of an example x only depends on its projection
xV onto V , to simplify notation in this section, we restrict attention to the dimensions of V and
consider examples x ∈ R2 drawn from D+ (or D−). Our main structural result, Theorem 6, shows
that if D+, D− have nearly matched their first three moments, and Ex∼DX

(x) is close to 0, then the
third-moment tensors of D+, D− must significantly deviate from 0.

Theorem 6 Let D be a distribution over B2(1)×{±1} that is consistent with an instance of learning
intersections of two halfspaces with γ-margin. Let c > 0 be any suitably large constant. Suppose
that D satisfies the (γc,m)-moment matching condition for m ∈ [3], and ∥Ex∼D+ x∥F ≤ γc. Then∥∥Ex∼D+ x⊗3

∥∥
F
,
∥∥Ex∼D− x⊗3

∥∥
F
= Ω(γ15).

Here we present some high-level intuition for the proof of Theorem 6. The formal proof
is given in Appendix B.7. To prove Theorem 6, we establish two technical lemmas. The first
lemma, Lemma 8, shows that the conditions in Theorem 6 imply that the smallest eigenvalue
of the covariance matrix of both D+ and D− will be at least γc. Thus, by properly rescaling
D (by at most a poly(γ) factor), we can create a new distribution D′ such that both (D′)+ and
(D′)− have isotropic covariance matrices and the distribution D′ still satisfies a γ′-margin condi-
tion with respect to an intersection of two halfspaces, where γ′ = γc

′
. Now assuming, for the

purpose of contradiction, that
∥∥Ex∼D+ x⊗3

∥∥
F
,
∥∥Ex∼D− x⊗3

∥∥
F

< poly(γ), we must also have∥∥Ex∼D′+ x⊗3
∥∥
F
,
∥∥Ex∼D′− x⊗3

∥∥
F
< poly(γ) on the new distribution D′ as well. This assumption
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Figure 1: Geometry of Intersection of Two Halfspaces under Assumption 1.

implies that both (D′)+ and (D′)− must have their first and third moment tensors roughly 0. Our
second lemma, Lemma 9, shows that the scale of the covariance matrices of D′+ and D′− must be
significantly different, which contradicts the previous assumption that the first three moments of D′+

and D′− are nearly matched. The proofs of these technical lemmas rely on a novel technique, which
we term polynomial one-sided approximation, that leverages weak duality between distributions with
specific moments and polynomial certificates. We summarize the property of one-sided polynomial
approximation in the following theorem and defer its proof to Appendix B.1.

Theorem 7 (Polynomial One-sided Approximation) For any d,m ∈ N, C ⊆ Rd, Ti ∈ (Rd)⊗i

for i ∈ [m], and τ ∈ R≥0, at most one of the following conditions can be satisfied:
a) There is a distribution D supported on C such that ∥Ex∼D(x

⊗i)− Ti∥F ≤ τ for any i ∈ [m];
b) There is a degree-m polynomial p : Rd → R, defined as p(x) =

∑m
i=1Ai · x⊗i, where p(x) ≥ 0

for any x ∈ C,
∑m

i=1 ∥Ai∥F ≤ 1 and
∑m

i=1Ai · Ti < −τ .
We call such a polynomial a one-sided approximation for C w.r.t. to moments Ti and tolerance τ .

Given Theorem 7, in order to certify the non-existence of certain distributions on C with specific
moments, it suffices to construct a one-sided approximating polynomial, as stated in Theorem 7.
However, a direct application of Theorem 7 may not be intuitive. In the rest of the section, we explain
how to use this idea to prove our two technical lemmas. To give a clearer intuition, it is convenient
to parameterize the instance of learning intersections of two halfspaces as in Assumption 1 (see
Figure 1 for a geometric illustration). We defer further discussion to Appendix B.2 showing that such
a parameterization can be made without loss of generality.

Assumption 1 Given an intersection of two halfspaces h∗ = sign(u∗ ·x+t1)∧sign(v∗ ·x+t2) and
a distribution D over B2(1)× {±1} satisfying the γ-margin condition w.r.t. h∗, we parameterize h∗

by an angle θ ∈ (0, π/2), and thresholds t ≥ 0, σ ≥ 0, where u∗ = sin θe1 − cos θe2, t1 = t sin θ
and v∗ = sin θe1+cos θe2, t2 = (1+σ)t sin θ such that ∥Ex∼D+ x∥ ≤ γc, t1, t2 ≥ γ, |t1|, |t2| ≤ 1.

Moment-matched Distributions Cannot Have Ill-Conditioned Covariance Matrices Our first
technical lemma (Lemma 8) shows that if D+, D− have nearly matched their first two moments,
then the covariance matrices of D+, D− cannot have small eigenvalues.

Lemma 8 Let D be a distribution over B2(1)×{±1} that is consistent with an instance of learning
intersections of two halfspaces with γ-margin, where γ is smaller than some sufficiently small
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constant. Let c > 0 be any suitably large constant. Suppose that D satisfies the (γc,m)-moment
matching condition for m ∈ [2] and ∥Ex∼D+ x∥F ≤ γc, ∥Ex∼D− x∥F ≤ γc. Then

∥∥(Σ+)−1
∥∥
2
≤

O(1/γ4) and
∥∥(Σ−)−1

∥∥
2
≤ O(1/γ4), where Σ+ := Ex∼D+ xxT and Σ− := Ex∼D− xxT .

The proof strategy of Lemma 8 is to construct a suitable polynomial function as a certificate, as
stated in Theorem 7. We will use the polynomial function f(x) = (u∗ · x+ t1)(v

∗ · x+ t2) as a
certificate. Intuitively, if the first two moments of D+, D− are nearly matched, then Ex∼D+ f(x) ≈
Ex∼D− f(x). Furthermore, by the γ-margin assumption, for every positive example x, f(x) ≥ γ2

and for every negative example x with h1(x)h2(x) = −1, f(x) ≤ −γ2. This implies that if the
probability Prx∼D−(h1(x) = h2(x)) is small, then Ex∼D+ f(x)−Ex∼D− f(x) ≥ Ω(γ2), which
gives a contradiction. Geometrically, if Prx∼D−(h1(x) = h2(x)) is large, then examples in this
region must have a significant contribution to Σ− along every direction v to make Ex∼D− x close to
0, which contradicts the fact that Σ− has a direction with small variance.

Moment-matched Distributions Must Have Large Third Moments By Lemma 8, it is safe to
assume that the marginal distribution DX has an isotropic covariance matrix. Our main structural
result, Lemma 9, shows that if D+, D− have nearly matched first three moments and their covariance
matrices are nearly isotropic, then their third moments must significantly deviate from 0. We defer
the proof of Lemma 9 to Appendix B.6.

Lemma 9 Let D be a distribution over B2(1)×{±1} that is consistent with an instance of learning
intersections of two halfspaces with γ-margin. Let c > 0 be any suitably large constant. Suppose
1. ∥Ex∼D+ x∥F ≤ γc, ∥Ex∼D− x∥F ≤ γc.
2. Ex∼D+ xxT = α2I +∆+,Ex∼D− xxT = α2I +∆−, where ∆+,∆− ∈ R2×2 are symmetric

matrices such that ∥∆+∥F ≤ γc, ∥∆−∥F ≤ γc and α2 > 0.
3.
∥∥(Ex∼D+ −Ex∼D−)x⊗3

∥∥
F
≤ γc.

Then we have
∥∥Ex∼D+ x⊗3

∥∥
F
≥ Ω(γ2),

∥∥Ex∼D− x⊗3
∥∥
F
≥ Ω(γ2).

The intuition behind Lemma 9 relies on Fact 1 and Fact 2 below that characterize the covariance
matrix of any pair of distributions D+, D− with zero mean and zero third moment tensor.

Fact 1 Let h∗ = sign(u∗ · x+ t1)∧ sign(v∗ · x+ t2) be the target hypothesis of an instance of the
problem of learning intersections of two halfspaces, and D be a distribution that is consistent with
h∗. Under Assumption 1, if Ex∼D+(x) = 0,Ex∼D+ x⊗3 = 0 and for every v ∈ Sd−1 ∩ V , it holds
Ex∼D+(v · x)2 = α2, then α2 ≤ t2 sin2 θ.

Fact 2 Let h∗ = sign(u∗ · x+ t1)∧ sign(v∗ · x+ t2) be the target hypothesis of an instance of the
problem of learning intersections of two halfspaces, and D be a distribution that is consistent with
h∗. Under Assumption 1, if Ex∼D− x = 0,Ex∼D− x⊗3 = 0 and for every v ∈ Sd−1 ∩ V , it holds
Ex∼D−(v · x)2 = β2, then β2 ≥ (1 + σ)t2 tan2 θ.

Here we give an overview of the proof techniques behind Fact 1 and Fact 2, and defer the full
proofs to Appendix B.5. We take Fact 1 as an example and show how the certificate one-sided
approximating polynomial used in Theorem 7 is derived. For every x that is labeled positive by h∗,
denote by p(x) the variable of the density of a distribution D+ over R2. Notice that any distribution
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D+ that satisfies the statement of Fact 1 gives a feasible solution to the following LP (1). Thus, to
upper bound the variance of D+, it is equivalent to upper bound the optimal value of LP (1).

max α2 s.t.
∑
x
p(x)x = 0,

∑
x
p(x)xxT = α2I,∑

x
p(x)x⊗3 = 0,

∑
x
p(x) = 1, p(x) ≥ 0,∀x ∈ supp(D+)

(1)

To upper bound the optimal value of LP (1), we use LP duality theory (Bertsimas and Tsitsiklis,
1997; Shapiro, 2001). The dual linear program to LP (1) is defined by LP (2), whose variable is
defined over the coefficients of f(x), a degree-3 polynomial over R2, and the objective function is
given by its constant term, namely

min a0 s.t. ∀x ∈ supp(D+), f(x) ≥ 0, a11 + a22 = −1. (2)

Here, a11, a22 are the coefficients of f with respect to monomials x2
1,x

2
2. Thus, to give tight bounds

for α2, β2, the key technical difficulty is to design a pair of polynomials that are feasible to the dual
LPs with nearly optimal objective values. The polynomials we used here are given by Lemma 10 and
Lemma 11 (illustrated in Figure 1), the proofs of which are deferred to Appendix B.4.

Lemma 10 Let h∗ = sign(u∗ · x+ t1) ∧ sign(v∗ · x+ t2) be the target hypothesis of an instance
of the problem of learning intersections of two halfspaces and D be a distribution that is consistent
with h∗. Under Assumption 1, the polynomial f∗(x) = 1

t sin θ (u
∗ · x − t sin θ)2(u∗ · x + t sin θ)

satisfies f∗(x) ≥ 0,∀x ∈ supp(D+).

Lemma 11 Let h∗ = sign(u∗ ·x+t1)∧sign(v∗ ·x+t2) be the target hypothesis of an instance of the
problem of learning intersections of two halfspaces and D be a distribution that is consistent with h∗.
Under Assumption 1, the polynomial f∗(x) = a0+ a1x1+ a2x2−x2

2, where a0 = (1+σ) tan2 θt2,
a1 = (2 + σ) tan2 θt and a2 = −σ tan θt satisfies f∗(x) ≤ 0,∀x ∈ supp(D−).

Given Fact 1 and Fact 2, under the γ-margin assumption, we know that if D+, D− have zero
means, zero third moments, and isotropic covariance matrices, then the variances of D+, D− must
differ by at least γ2. In other words, if D+, D− have zero means and matched second, third moments,
then their third moments must differ from 0 by Ω(γc). However, in general, we are not able to
guarantee that the moments of D+, D− satisfy the condition of Fact 1 and Fact 2 exactly. Thus, we
need Lemma 9, a robust version of the above argument. Importantly, the polynomials we construct in
Lemma 10 and Lemma 11 are stable enough and can still be used in our proof even if the moment
conditions are perturbed. Thus, using these one-sided approximating polynomials as certificates, we
are able to prove Lemma 9.

3. Relevant Direction Extraction for Intersections of Two Halfspaces

In Section 2, we developed structural results for the marginal distribution DV of any instance of
learning intersections of two halfspaces with a margin assumption. In this section, we will show that
with these structural results, we are able to efficiently find a unit vector w that is close to V for any
factorizable distribution D consistent with an instance of learning intersections of two halfspaces. As
we will show later, with such a unit vector w, we are able to design non-smoothed statistical queries
that can be used for weak learning. Recall by Theorem 2 that a necessary condition that makes CSQ

10
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algorithms not work is that low-degree moments of D+, D− are nearly the same. So, in Section 3.1,
we will present algorithms that work under this “hard” condition, while in Section 3.2, we will give
an algorithm under the easier condition where the low-degree moments of D+, D− are mismatched.

3.1. Relevant Direction Extraction with Matched Moments

When D+, D− have nearly the same low-degree moments, the moments of both of D+, D− look
like those of DX . As we mentioned in Section 2, in this case, the third moment of DX must deviate
from 0 significantly. In this step, we will make use of this property to perform certain unsupervised
learning tasks over DX to find some w ∈ Sd−1 close to V .

An Efficient SQ Algorithm for Relevant Direction Extraction with Matched Moments Our
initial attempt was inspired by independent component analysis (ICA) (Frieze et al., 1996; Arora
et al., 2012) and its generalization (Vempala and Xiao, 2011). The generalized ICA studies the
following problem. Consider a distribution DX over Rd, where there is a k-dimensional subspace V
such that DV and DW (DV ⊥) are independent. Given sample access to DX , ICA is asked to recover
the subspaces V and W . The core idea of generalized ICA is to solve some non-convex optimization
task based on higher moments of DX . Vempala and Xiao (2011) observed that if DX has the same
first m − 1 moments as the standard Gaussian, for m ≥ 3, but has a different mth moment, then
any local maximum (minimum) u∗ of f∗(u∗) over Sd−1 with f∗(u∗) > γm (f∗(u∗) < γm) must
be either in V or W . Here, f∗(u) = Ex∼DX

(u · x)m and γm is the m-th moment of the standard
normal distribution. In particular, if the distribution DW is a standard Gaussian, then any u∗ obtained
above must be in V , which gives a reasonable method that finds one direction in V .

However, for two general distributions DV , DW , this observation does not immediately give a
method to find a direction u ∈ V , because we are not able to guarantee whether the local optimum
of f∗(u) is in V or W . In fact, for the problem of learning intersections of two halfspaces, V only
has dimension 2; but it is possible that DW is also a factorizable distribution that can be factorized
into Ω(d) distributions, each of which is isomorphic to DV . Thus, information-theoretically, finding
a list of O(d) directions such that one of them is close to V is the best one can achieve. To do this,
the direct attempt is to find the first local optimum u(1), look at the subspace (u(1))⊥, find u(2),
the next local optimum of f∗ within (u(1))⊥, and perform this procedure recursively d times. This
can be done because every time we make a projection, the resulted distribution is still factorizable.
Unfortunately, such a direct approach cannot be turned into an efficient algorithm, and no fully
polynomial time algorithm for generalized ICA is known so far. This is because, due to the sampling
error and optimization error for optimizing f∗, we are only able to find an approximate solution for
u(1), which is not in V or W exactly. Thus, the local optimum of f∗ restricted at (u(1))⊥ is not
guaranteed to be a local optimum of f∗ over Sd−1. Such an error can accumulate exponentially fast
with respect to the order in the output list (as demonstrated in Vempala and Xiao (2011)). Since we
are not able to guarantee which u in the list is close to V , in the worst case, our target direction could
be the last few discovered directions in the list. To guarantee that these vectors are still close to V ,
the first several solutions must be found with error γ−Ω(d). Our first result in this section shows that,
although such a framework cannot give us a computationally efficient algorithm, we can modify it to
get an SQ-efficient algorithm that outputs a list of poly(d/γ) unit vectors such that at least one of
them is poly(γ/d)-close to V . In other words, we show that extracting one relevant direction can
be done in a sample-efficient manner. Formally, we establish the following theorem (we defer the
algorithm and the proof to Appendix C.1).

11
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Theorem 12 There is a Statistical Query learning algorithm A such that for c > 0, a suitably large
constant, and for an instance of learning intersections of two γ-margin halfspaces under factorizable
distributions, if the input distribution D satisfies the (γc,m)-moment matching condition for m ∈ [3],
the algorithm makes poly(d/γ) many statistical queries, each of which has tolerance poly(γ/d), and
outputs a direction w ∈ Rd such that with probability at least poly(γ/d), ∥wW ∥2 ≤ poly(γ/d).

Computationally Efficient Algorithm for Relevant Direction Extraction with Matched Moments
Given the above discussion, finding a relevant direction via a direct non-convex optimization method
is technically challenging. In summary, since there is no structural assumption over DW , the
function f(u) = Ex∼DX

(u · x)3 could have too many locally optimal solutions and some of them
(including the ones that are close to V ) are hard to find; this makes the error accumulate fast when
sequentially finding each local optimum. Thus, to avoid such an issue of error accumulation and
get a computationally efficient algorithm, one hope is to find directions in V and W simultaneously.
Following this idea, we give a fully-polynomial time algorithm that solves this task using techniques
from the tensor decomposition literature. Formally, we have the following theorem.

Theorem 13 There is a learning algorithm A such that for every c, a suitably large constant, and
any instance of learning intersections of two γ-margin halfspaces under factorizable distributions,
if the input distribution D satisfies the (γc,m)-moment matching condition for m ∈ [3], A runs
in poly(d, 1/γ) time and outputs a list of d unit vectors O such that at least one direction w ∈ O
satisfies ∥wW ∥2 ≤ poly(γ) with probability Ω(γ/d).

Tensor decomposition techniques usually deal with problems of the following type. Given a
tensor T ∈ Rd×d×d of the form T =

∑k
i=1(v

(i))⊗3, recover v(i), i ∈ [k] for some small k. A
number of prior works address this problem from a computational point of view. Unfortunately, for
the moment tensor of a general distribution, k can be large and it can be challenging to compute
the decomposition. This also happens for our problem. However, our goal is to find a direction
w ∈ V , instead of doing a complete tensor decomposition. Assuming that DX has zero mean,
then we can write T ∗ := Ex∼D x⊗3 = Ex∼DV

x⊗3
V + Ex∼DW

x⊗3
W . Notice that for every v ∈ Rd,

we have M = T ∗ · v = Ex∼DV
xV x

T
V (xV · v) + Ex∼DW

xWxT
W (xW · v) = MV + MW ,

where MV = Ex∼DV
xV x

T
V (xV · v) and MW = Ex∼DW

xWxT
W (xW · v). Since V ⊥ W , every

eigenvector w of MV must also be an eigenvector of M . Thus, as long as MW does not have a
common eigenvalue as MV , we are able to find one direction w ∈ V using eigendecomposition
algorithms. On the other hand, if the eigenvalues of MV are the same as (or close to) the eigenvalues
of MW , vectors that have heavy components in both V and W can also be eigenvectors of M , which
makes finding w ∈ V hard. To overcome this difficulty, we choose v ∼ N(0, 1dI). Such a choice
makes the eigenvalues of MV and MW are independent. Importantly, by Theorem 6, TV significantly
deviates from 0. Thus, if we write vV = α2v0

V , where v0
V is the direction of vV , then with constant

probability MV /α
2 has at least one eigenvalue σ1 with magnitude at least γc. On the other hand,

the corresponding eigenvalue α2σ1 of MV is a random variable that satisfies an anti-concentration
property. In the proof of Theorem 13, we will show that this anti-concentration property can make
α2σ1 far away from any eigenvalue of MW with a non-trivial probability. Thus, as long as we
estimate the moment tensor of T ∗ up to poly(γ/d) accuracy, we are able to find a direction w
close to V with a non-trivial probability. We defer the algorithm and the proof of Theorem 13 to
Appendix C.2.
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3.2. Relevant Direction Extraction with Mismatched Moments

In Section 3.1, we described an efficient algorithm that outputs a direction w that is close to V when
D+ and D− have nearly matched low-degree moments. In this section, we focus on a different regime,
where the low-degree moments of D+, D− are not matched. Recall that in Definition 5, we use the
(α,m)-moment matching condition to measure the level of mismatch of the low-degree moments of
D+, D−. This characterizes the difficulty of using polynomials to detect the correlation between the
labels and the unlabeled examples. If for small m, the (α,m) moment matching condition always
does not hold, then one can use the polynomial regression method to output a degree-m Polynomial
Threshold Function (PTF) with poly(α) advantage. However, this does not imply that we are able
to run a boosting algorithm with PTFs. Indeed, this would require the moment-matching condition
to not hold throughout the process. However, when the distribution D is factorizable, instead of
boosting using polynomials, our strategy will be to extract a direction u in the relevant subspace
V by solving a carefully defined non-convex optimization problem. The main result we obtain is
summarized in Theorem 14. We defer the full proof of Theorem 14 and the corresponding algorithm
to Appendix D.

Theorem 14 There is an algorithm A (Algorithm 4) such that for any instance of learning inter-
sections of two halfspaces under factorizable distributions, if the distribution D does not satisfy the
(α,m)-moment matching condition and D satisfies the (α2d−c/2m, t)-moment matching condition
for any t ≤ m− 1,m ≤ 3 and a sufficiently large universal constant c, then A draws poly(d, 1/α)
i.i.d. samples from D, runs in time poly(d, 1/α), and outputs a unit vector u ∈ Sd−1 such that
∥uW ∥ = O(α) with probability 2/3.

In the rest of the section, we provide an overview of the proof of Theorem 14. Suppose that
Ex∼D+(x⊗t

V ) and Ex∼D−(x⊗t
V ) are different, for some t = m ∈ N. Then the tensor T =

(Ex∼D+ −Ex∼D−)(x⊗m
V ) is nonzero and T · u⊗m = 0 for all points u ∈ W . Therefore, the

function f(u) = u⊗m · T obtains a local maximum/minimum only if u⊗m ∈ V ⊗m, which implies
that u ∈ V . Unfortunately, we are not able to solve such an optimization problem exactly. As we
will show in the proof, an approximate solution (that can be efficiently found via a gradient-descent
method) suffices for our purposes. Moreover, there is still a technical challenge to implement this
approach. Since V is unknown to us, it is impossible for us to estimate T . However, if Ex∼D+(x⊗t)
and Ex∼D−(x⊗t) are the same for all t ≤ m− 1, then (Ex∼D+ −Ex∼D−)(x⊗m) = T , for which
we can efficiently estimate with samples. We will show that if we take m to be the smallest index
such that D does not satisfy the (α,m)-moment matching condition, but satisfies the (α2d−c/2m, t)-
moment matching condition, then we are able to take poly(dm, 1/α) examples from D+, D− to
estimate T , so that any approximate solution to the estimated function gives a direction close to V .
In particular, to use this approach to learn an intersection of two halfspaces, we only need m ≤ 3.

4. Localization with the Relevant Direction and Learning Intersections of Halfspaces

In the previous sections, we have shown that for every factorizable distribution D that is consistent
with an instance of learning intersections of two halfspaces with a margin, we are able to efficiently
find one direction w that is close to the relevant subspace V . Based on these results, a natural attempt
is to find the next relevant direction so that we can approximately find the relevant subspace V ; and
do a brute-force search over all intersections of two halfspaces over V . However, the structural
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result we obtained in Section 2 only allows us to find one direction. Furthermore, since we make
no distributional assumptions over DV , to make the brute-force search method succeed, a small
mismatch between V and the approximate subspace we found could lead to a large error. On the
other hand, instead of trying to recover the relevant subspace, we make the following observation.

Lemma 15 Let D be a joint distribution of (x, y) on Bd(1) × {±1} that is consistent with an
intersection of halfspaces with γ-margin and w ∈ Sd−1 such that ∥wV ∥2 ≤ cγ, for some small
constant c, where V is the relevant subspace of the intersection of halspaces. Then for any band
Bt := {x ∈ Bd(1) | x · w ∈ [t, t + cγ]} where t ∈ R and c is a sufficiently small constant, the
distribution of (x, y) conditioned on x ∈ Bt is consistent with an instance of learning a degree-2
polynomial threshold function with Ω(γ2)-margin.

Lemma 15 states that for any instance of learning an intersection of two halfspaces with a margin,
if we cut the space into bands Bi, i = 1, 2, . . . , along a direction u that is close to V , then the
distribution in each band is consistent with a degree-2 PTF. This means that some correlational
statistical query of the form q(x) = p(x)1(x ∈ Bi) can be used to detect the correlation between
DX and DY , and allows us to efficiently find a weak hypothesis h with poly(γ)-advantage. We state
the algorithmic result for the weak learning algorithm in Theorem 16.

Theorem 16 There is an algorithm A such that for every instance of learning intersections of
two halfspaces with γ-margin, given w ∈ Sd−1 such that ∥wW ∥2 ≤ cγ where c is a sufficiently
small constant, A draws poly(d, 1/γ) examples from D, runs in poly(d, 1/γ) time, and outputs a
hypothesis h : Bd(1)→ {±1} such that with probability at least 2/3, err(h) ≤ 1/2− Ω(γ).

We emphasize that Theorem 16 holds without the assumption that D is factorizable. This immediately
implies that we are able to get an efficient strong learning algorithm via boosting algorithms (Schapire
and Freund, 2013). Due to space limitations, we defer the proofs in this section to Appendix E.

5. Conclusion

The question of whether the intersection of two halfspaces with a margin can be learned in fully poly-
nomial time is a central problem in Computational Learning Theory that has been open for over two
decades. Our work makes progress on this problem by bypassing the previously known limitations
through a novel algorithmic framework, yielding new techniques and structural insights. While our
approach does not resolve the problem in full generality, the case of factorizable distributions that
we consider is a fairly challenging setting and we expect that some of the ideas introduced here will
be useful even beyond our factorization assumptions. The key and most difficult step in learning
intersections of halfspaces is finding statistical queries that enable weak learning. Our approach to
this is to identify a direction that is close to the relevant subspace. Most known learning lower-bounds
involving statistical learning algorithms are based on hiding a subspace among irrelevant directions.
Our results show that one can efficiently address these cases using SQ algorithms and establish that
common SQ lower-bound constructions are not applicable to our setting. Thus, even if an SQ lower
bound exists, it would require a novel construction with non-factorizable distributions. Furthermore,
our algorithmic result establishes a strong separation between CSQ and SQ algorithms for weakly
realizable PAC learning. While it is known that SQ is needed for efficient strong realizable PAC
learning, our work gives the first natural setting where SQ is even necessary for efficient weakly
learning. Our learning framework builds on such a separation, and we expect understanding such a
separation may lead to faster algorithms for learning other hypothesis classes.
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Appendix

Structure of Appendix We give an overview of the structure of the appendix. In Appendix A, we
provide a complete list of notations and preliminaries. In Appendix B, we provide missing proofs
and discussions in Section 2. In Appendix C, we provide omitted proofs in Section 3. In Appendix E,
we provide omitted proofs in Section 4. In Appendix F, we give a complete description of our
main algorithm and provide the proof of Theorem 3. In Appendix D, we give a complete proof of
Theorem 2, the CSQ lower bound for learning intersections of two halfspaces under factorizable
distributions.

Appendix A. Preliminaries and Notations

In this section, we present a complete list of notations, preliminaries and related background on the
statistical learning model.

Basic Notations In this paper, we use small boldface characters for vectors and use capital lightface
characters for subspaces, matrices and tensors. For n ∈ Z+, we denote by [n] := {1, . . . , n}. For
x ∈ Rd, and i ∈ [d], we use xi to denote the i-coordinate of x. For i ∈ [d], we denote by ei the i-th
standard basis of Rd. Let V ⊆ Rd be a subspace, we denote by xV := projV (x), the projection of
x onto the subspace V and denote by V ⊥ the orthogonal complement of V. For u,v ∈ Rd, we use
u · v to denote the inner product of u and v and we use ∥u∥2 to denote the ℓ2 norm of u. We use
Sd−1 = {x ∈ Rn : ∥x∥2 = 1} to denote the d-dimensional unit sphere and Bd(r) the d-dimensional
ball with radius r.

For any distribution D, we use Ex∼D(x) to denote the expectation of D. Let D be a distribution
of (x, y) over Rd × {±1}. We use DX to denote the marginal distribution of D over Rd. For any
subspace V ⊆ Rd, we use DV to denote the marginal distribution of D for xV . For z ∈ {±1}, we
use Dz

V to denote the marginal distribution of D over xV condition on y = z and use Dz to denote
the marginal distribution DX over x condition on y = z For a distribution DX over Rd, we say DX

has an isotropic covariance matrix if there is some α ≥ 0 such that Ex∼DX
xx⊺ = αI , where α is

called the scale of Ex∼DX
xx⊺.

For tensors, we will consider a k-tensor to be an element in (Rn)⊗k ∼= Rnk
. A symmetric tensor

is a tensor that is invariant under a permutation of its vector arguments. We use ∥T∥F to denote
the Frobinius norm of T . We will use Ti1,...,ik to denote the coordinate of a k-tensor T indexed by
the k-tuple (i1, . . . , ik). For a tensor T ∈ (Rd)⊗m and π : [m]→ [m] be a permutation of indices,
we use π(T ) to denote the tensor permuted by π defined as π(T )(i1),··· ,(im) = Tπ(i1),··· ,π(im). We
define sym(T ) as 1

m!

∑
π∈Π π(T ), where Π is the set of all possible permutations of [m]. By abuse

of notation, we will sometimes treat a tensor T ∈ (Rd)⊗m as a linear mapping, i.e., for v ∈ Rd, we
use T · v to denote applying the linear mapping T : Rd → (Rd)⊗m−1 specified by T on v. For a
vector v ∈ Rn, we denote by v⊗k to be a vector (linear object) in Rnk

. For a matrix M ∈ Rn×m,
we denote by ∥M∥2, ∥M∥F to be the operator norm and Frobenius norm respectively.

We present the following fact that will be useful in the analysis of our algorithms.

Fact 3 Let T ∈ (Rd)⊗m and ∥T∥F = 1 be a symmetric tensor for m ≤ 3, then maxu∈Sd−1 u⊗m ·
T ≥ 1/poly(d).

Proof [Proof of Fact 3]
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The statement trivially holds for m = 1, 2. Therefore, we only need to consider the case
m = 3. We first show that any symmetric T ∈ (Rd)⊗3 can be written as T =

∑N
i=1 αiu

⊗3
i , where

N = poly(d),
∑N

i=1 |αi| = poly(d) and each ui is a unit vector. Suppose we have shown that this is
true, then it is easy to see that 1 = T · T =

∑N
i=1 αiui

⊗3 · T ≤ poly(d)maxi(ui
⊗3 · T ), therefore

at least one ui satisfies ui
⊗3 · T = 1/poly(d).

Therefore, we just need to show that the statement above about decomposition is true. Since
sym(vi ⊗ vj ⊗ vk) where vi,vj ,vk are standard basis vectors span the space of symmetric tensors.
Therefore, it suffices for us to show that the statement holds true for any T = sym(vi ⊗ vj ⊗ vk).
Notice that for any u,v ∈ Rd

(u+ v)⊗3 − u⊗3 − v⊗3

=u⊗ v⊗2 + v ⊗ u⊗ v + v⊗2 ⊗ u

+ v ⊗ u⊗2 + u⊗ v ⊗ u+ u⊗2 ⊗ v

=3sym(u⊗ v⊗2) + 3sym(v ⊗ u⊗2) ,

and

(u− v)⊗3 − u⊗3 + v⊗3

=u⊗ v⊗2 + v ⊗ u⊗ v + v⊗2 ⊗ u

− (v ⊗ u⊗2 + u⊗ v ⊗ u+ u⊗2 ⊗ v)

=3sym(u⊗ v⊗2)− 3sym(v ⊗ u⊗2) .

Taking the difference of the above two equations shows that the decomposition statement is true
for any T = sym(v ⊗ u⊗2). Therefore, we just need to decompose sym(vi ⊗ vj ⊗ vk) as linear
combination of tensors of the form v⊗3 and sym(v ⊗ u⊗2). Then notice that since sym is a linear
operator

sym(vi ⊗ (vj + vk)
⊗2)− sym(vi ⊗ v⊗2

j )− sym(vi ⊗ v⊗2
k )

=sym(vi ⊗ (vj + vk)
⊗2 − vi ⊗ v⊗2

j − vi ⊗ v⊗2
k )

=sym(vi ⊗ vj ⊗ vk + vi ⊗ vk ⊗ vj)

=sym(vi ⊗ vj ⊗ vk) .

This completes the proof.

Background on Statistical Query Model SQ algorithms are a class of algorithms that are allowed
to query expectations of bounded functions on the underlying distribution through an (SQ) oracle
rather than directly access samples. The model was introduced by Kearns (1998) as a natural
restriction of the PAC model (Valiant, 1984) in the context of learning Boolean functions. Since
then, the SQ model has been extensively studied in a range of settings, including unsupervised
learning (Feldman, 2016). The class of SQ algorithms is broad and captures a range of known
algorithmic techniques in machine learning including spectral techniques, moment and tensor
methods, local search (e.g., EM), and many others (see, e.g., Feldman et al. (2017a,b) and references
therein).
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Definition 17 (SQ Model) Let D be a distribution on X . A statistical query is a bounded function
q : X → [−1, 1]. We define STAT(q, τ) to be the oracle that given any such query q, outputs a
value v such that |v − Ex∼D[q(x)]| ≤ τ , where τ > 0 is the tolerance parameter of the query. A
statistical query (SQ) algorithm is an algorithm whose objective is to learn some information about
an unknown distribution D by making adaptive calls to the corresponding STAT(q, τ) oracle.

Basics of Correlational Statistical Query(CSQ) Model In particular, given D is a distribution on
X × {−1, 1}, we can define the Correlational Statistical Query (CSQ) model as a further restriction
of the SQ model.

Definition 18 (CSQ Model) Let D be a distribution on X × {−1, 1}. A correlational statistical
query is a bounded function q : X × {−1, 1} → [−1, 1]. We define CSTAT(τ) to be the oracle that
given any such query q, outputs a value v ∈ [−1, 1] such that |v − E(x,y)∼D[yq(x)]| ≤ τ , where
τ > 0 is the tolerance parameter of the query. A statistical query (SQ) algorithm is an algorithm
whose objective is to learn some information about an unknown distribution D by making adaptive
calls to the corresponding STAT(q, τ) oracle.

Definition 19 (Function Representation of Distribution for CSQ) Let D be a joint distribution
of (x, y) supported on Rd × {±1} where D+ and D− has probability density functions PD+ , PD− :
Rd → R+. Let D0 be a distribution on Rd with density function PD0 : Rd → R+ where the support
of D contains the support of D+ and D−. Then, the function representation of D for CSQ w.r.t. D0

is defined as a function fD,D0 : Rd → R such that fD,D0(x) = (PD+(x)− PD−(x))/PD0(x).

Definition 20 (Pairwise Correlation) For functions f, g : Rd 7→ R+, we defined the correlation
between f and g under the distribution D0 to be the expectation Ex∼D0 [f(x)g(x)].

Definition 21 We say that a set of functions F mapping Rd → R is (γ, β)-correlated relative to
a distribution D0 if for any fi, fj ∈ F , the correlation Ex∼D0 [fi(x)fj(x)] ≤ γ for all i ̸= j and
Ex∼D0 [fi(x)fj(x)] ≤ β for i = j.

Definition 22 (Decision Problem over Distributions) Let D be a fixed distribution and D be a
distribution family. We denote by B(D, D) the decision problem in which the input distribution D′ is
promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal is to distinguish the two cases
with high probability.

Definition 23 (Correlational Statistical Query Dimension) For β, γ > 0, a decision problem
B(D, D), where D is a fixed distribution and D is a family of distribution both over X × {±1}, and
fD,D0 ≡ 0. Let s be the maximum integer such that there exists a finite set of distributions DD ⊆ D
such that {fD,D0 | D ∈ DD} is (γ, β)-correlated relative to D0 and |DD| ≥ s. The Correlational
Statistical Query dimension with pairwise correlations (γ, β) of B is defined to be s, and denoted by
s = CD(B, γ, β).

Lemma 24 Let B(D, D) be a decision problem, where D is the reference distribution and D is a
class of distribution. For γ, β > 0, let s = CD(B, γ, β). For any γ′ > 0, any CSQ algorithm for B
requires queries of tolerance at most

√
γ + γ′ or makes at least sγ′/(β − γ) queries.
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Appendix B. Omitted Proofs from Section 2

In this section, we present missing details in Section 2.

B.1. Proof of Theorem 7

In this section, we give the proof of Theorem 7. For convenience, we restate Theorem 7 below.

Theorem 25 (restatement of Theorem 7) For any d,m ∈ N, C ⊆ Rd, Ti ∈ sym((Rd)⊗i) for
i ∈ [m] and τ ∈ R≥0, at most one of the following conditions can be satisfied:

a) there exists a distribution D supported on C such that ∥Ex∼D(x
⊗i) − Ti∥F ≤ τ for any

i ∈ [m];

b) there exists a degree-m polynomial p : Rd → R defined as p(x) =
∑m

i=1Ai · x⊗i where
p(x) ≥ 0 for any x ∈ C,

∑m
i=1 ∥Ai∥F ≤ 1 and

∑m
i=1Ai · Ti < −τ .

We call such a polynomial above a one-sided approximation polynomial for C w.r.t. to moments
information Ti and tolerance τ .

Proof [Proof of Theorem 25] We prove Theorem 25 by contradiction. Suppose that the two
conditions in Theorem 25 are satisfied simultaneously. Since for every x ∈ C, p(x) ≥ 0, we know
that Ex∼D p(x) ≥ 0. On the other hand, we have

E
x∼D

p(x) =
m∑
i=1

Ai · E
x∼D

x⊗i =
m∑
i=1

(Ai · Ti) +
m∑
i=1

Ai · ( E
x∼D

x⊗i − Ti)

< −τ +
m∑
i=1

Ai · ( E
x∼D

x⊗i − Ti) ≤ 0.

This gives a contradiction.

B.2. Discussion on Structural Assumptions made in Section 2

In this section, we explain Assumption 1 as well as other structural assumptions made in Section 2
can be made without loss of generality.

We first argue that we can assume V , the subspace spanned by u∗,v∗ is exactly equal to
span{e1, e2}. If u∗,v∗ are parallel to each other, then the problem degenerates to the problem
of learning a single halfspace or learning a degree-2 polynomial threshold function. Furthermore,
since any rotation matrix U will not change the inner product between two points in Rd, if V ̸=
span{e1, e2}, we can apply a rotation matrix U that maps u∗,v∗ to span{e1, e2}, and every example
U⊺x still satisfies γ-margin assumption and has the same label as x. Based on this, in the rest of the
section, we argue that Assumption 1 can be made without loss of generality.

Assumption 2 (restatement of Assumption 1) Given an intersection of two halfspaces h∗ =
sign(u∗ · x + t1) ∧ sign(v∗ · x + t2) and a distribution D over B2(1) × {±1} that consistent
with h∗ with the γ-margin condition, we parameterize h∗ by θ ∈ (0, π/2), t ≥ 0, σ ≥ 0 where
u∗ = sin θe1 − cos θe2, t1 = t sin θ and v∗ = sin θe1 + cos θe2, t2 = (1 + σ)t sin θ. Furthermore,
we assume ∥Ex∼D+ x∥2 ≤ γc, t1, t2 ≥ γ, |t1|, |t2| ≤ 1, where c is some large constant.
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Figure 2: Geometrical Illustration of Assumption 1. Two halfspaces h1 = sign(u∗ · x + t1) and
h2 = sign(v∗ · x + t2) are colored in black. Red dashed lines represent the directions of weight
vectors u∗,v∗.

First, we argue that we can without loss of generality assume ∥Ex∼D+ x∥2 ≤ γc, for any large
constant c. Assuming ∥Ex∼D+ x∥2 ≥ γc instead, by drawing poly(d/γ) positive examples from
D+

X , we are able to estimate some x̂ ∈ V such that ∥x̂−Ex∼D+ x∥2 ≤ γc/2. Since each example
x has ∥x∥2 ≤ 1, we know that ∥x− x̂∥2 ≤ 2, thus by rescaling, (x − x̂)/2 satisfies γ/2-margin
assumption and the resulting positive example has mean γc/2-close to the origin.

Consider the target halfspace h∗ = sign(u∗ · x+ t1) ∧ sign(v∗ · x+ t2). We furthermore argue
we can without loss of generality make the following two assumptions on h∗

1. Under the assumption ∥Ex∼D+ x∥2 ≤ γc, t1, t2 ≥ 0. This is because if t1 ≤ 0 (without loss of
generality), then every positive example x satisfies u∗ · x ≥ γ, which implies ∥Ex∼D+ x∥2 ≥
γ.

2. |t1|, |t2| ≤ 1. If this is not the case, then the problem degenerates to learning a single halfspace
and can be solved trivially.

Given the above assumptions, it will be convenient for us to parameterize h∗ = sign(u∗ · x +
t1) ∧ sign(v∗ · x+ t2) to be described by t ∈ [0,∞), θ ∈ [0, π/2) and σ ∈ [0,∞) where we have
u∗ = sin θe1 − cos θe2, t1 = t sin θ and v∗ = sin θe1 + cos θe2, t2 = (1 + σ)t sin θ (as illustrated
in Figure 2). This will be convenient for later calculations.

Notice that for every u∗,v∗ such that θ(u∗,v∗) = π − 2θ, there is a rotation matrix U such that
Uu∗ = sin θe1 − cos θe2,v

∗ = sin θe1 + cos θe2. Since rotation matrix U maintains the γ-margin
assumption, parameterizing h∗ in such a way does not lose the generality.

B.3. Proof of Lemma 8

In this section, we present the proof of Lemma 8. For convenience, we restate Lemma 8 as follows.

Lemma 26 (restatement of Lemma 8) Let D be a distribution over B2(1)×{±1} that is consistent
with an instance of learning intersections of two halfspaces with γ-margin assumption, where γ is
smaller than some sufficiently small constant. Let c > 0 be any suitable large constant. Suppose
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Figure 3: Geometrical illustration for the proof of Lemma 8. The vector colored in purple corresponds
to case 1 in the proof and the vector colored in green corresponds to case 2 in the proof.

1. ∥Ex∼D+ x∥F ≤ γc, ∥Ex∼D− x∥F ≤ γc, ∥(Ex∼D+ −Ex∼D−)x∥F ≤ γc

2. ∥(Ex∼D+ −Ex∼D−)xx⊺∥F ≤ γc,

then
∥∥(Σ+)−1

∥∥
2
= O(1/γ4) and

∥∥(Σ−)−1
∥∥
2
= O(1/γ4), where Σ+ := Ex∼D+ xx⊺ and Σ− :=

Ex∼D− xx⊺.

We first give some high-level intuition behind Lemma 26. For the purpose of contradiction, we
assume that

∥∥(Σ+)−1
∥∥
2
> Ω(1/γc) or

∥∥(Σ−)−1
∥∥
2
> Ω(1/γc). Therefore, there must be a unit

vector v such that v⊺Σ+v ≤ O(γc) or v⊺Σ+v ≤ O(γc). However, since Σ+ and Σ− are close to
each other in Frobinous norm, it must be that v⊺Σ+v ≤ O(γc) and v⊺Σ−v ≤ O(γc). Roughly
speaking, this means most of the samples are inside a thin band along the direction of v⊥, i.e., inside
the band region B := {x ∈ R2 | |x · v| ≤ γ/2}. Let f∗(x) = sign(u∗ · x+ t1) ∧ sign(v∗ · x+ t2)
be the true concept function, and let A+, A− be the region of {x ∈ R2 | f∗(x) = 1} and
{x ∈ R2 | f∗(x) = −1} respectively. Notice that there are two cases for this band region B(see
Figure 3 for illustration): either

1. sign(u∗ · v⊥) = sign(v∗ · v⊥). In this case, we show that the first moments of D+, D− are
not close along the direction of v⊥.

2. sign(u∗ ·v⊥) ̸= sign(v∗ ·v⊥). In this case, we show that the moment information must differ
by giving a degree-2 polynomial p that Ex∼D+ [p(x)] and Ex∼D− [p(x)] differs from each
other, where we choose this p(x) := (u∗ · x+ t1)(v

∗ · x+ t2).

In both cases, this contradicts the assumption that D is a moment-matching distribution. We give the
formal proof of Lemma 26 below.
Proof [Proof of Lemma 26] To prove the statement, it suffices for us to show that there exists a
universal constant c′ > 0, given

1. ∥Ex∼D+ x∥F ≤ c′γ4/100, ∥Ex∼D− x∥F ≤ c′γ4/100 and

2. ∥Ex∼D+ xx⊺ −Ex∼D− xx⊺∥F ≤ c′γ4/100,
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then for any v ∈ S1, v⊺Σ−v ≥ c′γ4. Suppose we can prove the above. Then given c is a sufficiently
large constant and γ is at most a sufficiently small constant in Lemma 26, the assumption of the above
statement must be satisfied. Therefore, we must have v⊺Σ−v ≥ c′γ4 and v⊺Σ−v = v⊺Σ+v −
v⊺(Σ− −Σ+)v ≥ c′γ4/2, which implies that

∥∥(Σ+)−1
∥∥
2
= O(1/γ4) and

∥∥(Σ−)−1
∥∥
2
= O(1/γ4).

We will prove v⊺Σ−v ≥ c′γ4 for two cases. Let v⊥ be the unique unit vector up to negation
that v⊥ · v = 0. We consider the cases that:

1. sign(u∗ · v⊥) = sign(v∗ · v⊥) or (either u∗ · v⊥ or v∗ · v⊥ = 0), and

2. sign(u∗ · v⊥) ̸= sign(v∗ · v⊥).

For the case sign(u∗ · v⊥) = sign(v∗ · v⊥), let v⊥ be the unit direction that v⊥ · v = 0,
u∗ · v⊥ ≥ 0 and v∗ · v⊥ ≥ 0. Take c′ > 0 to be a sufficiently small constant and assume for the
purpose of contradiction that v⊺Σ−v ≤ c′γ3. Let B := {x ∈ B2(1) | |x · v| ≤ γ/2}. Then notice
that by Markov’s inequality,

Pr
x∼D−

[x ̸∈ B] ≤ E
x∼D−

[(x · v)2]/(γ2/4) ≤ v⊺Σ−v/(γ2/4) ≤ cγ ,

where c is a sufficiently small constant. Now, we show that for any x ∈ B such that x ·u∗+ t1 ≤ −γ,
x · v⊥ ≤ −γ/2. First notice that

x · u∗ = x · projvu∗ + x · projv⊥u∗ = (x · v)(v · u∗) + (x · v⊥)(v⊥ · u∗) . (3)

Suppose u∗ · v⊥ = 0, then we immediately get x · u∗ + t1 ≥ −|x · v| ≥ −γ/2. Therefore, no such
x exists, and we can assume without loss of generality that u∗ · v⊥ > 0. Furthermore, notice that for
any x ∈ B and x · v∗ + t1 ≤ −γ, given Equation (3), we get

x · v⊥ =
x · u∗ − (x · v)(v · u∗)

v⊥ · u∗ ≤ −γ − (x · v)(v · u∗)

v⊥ · u∗ ≤ −γ − (x · v)(v · u∗) ≤ −γ/2 ,

where the third from the last inequality follows from x · u∗ ≤ −γ − t1 ≤ −γ and the last inequality
follows from x ∈ B and |v·u∗| ≤ 1. Similarly, we also have that for any x ∈ B and x·v∗+t2 ≤ −γ,
x · v⊥ ≤ −γ/2. Combining the above two and the γ-margin condition gives that, for any x ∈ B and
x ∈ supp(D−), x · v⊥ ≤ −γ/2. Then we get

E
x∼D−

[v⊥ · x] = E
x∼D−

[v⊥ · x|x ∈ B] Pr
x∼D−

[x ∈ B] + E
x∼D−

[v⊥ · x|x ̸∈ B] Pr
x∼D−

[x ̸∈ B]

≤(−γ/2)(1− cγ) + cγ

≤− γ/4 + γ/8 ≤ −γ/8 ,

where that last inequality follows from that c is a sufficiently small constant. This contradicts that
∥Ex∼D− x∥F ≤ c′γ4/100 in the assumption. Therefore, we must have v⊺Σ−v ≥ c′γ3 ≥ c′γ4. This
proves the statement for Case 1.

For the case that sign(u∗ · v⊥) ̸= sign(v∗ · v⊥), let B := {x ∈ B2(1) | |v · x| ≤ γ/2}. Let the
c′ in the statement be a sufficiently small constant. Suppose we can prove that Prx∼D− [x ̸∈ B] =
Ω(γ2), then we are done, since from the definition of B, we immediately get

v⊺Σ−v ≥ Pr
x∼D−

[(x · v)2 | x ̸∈ B] Pr
x∼D−

[x ̸∈ B] = Ω(γ4) .
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To show that Prx∼D− [x ̸∈ B] = Ω(γ2), we consider the degree-2 polynomial p(x) := (u∗ · x+ t1)(v
∗ · x+ t2).

By Assumption 1, we know that t2 ≤ 1, t1 ≤ 1. Therefore,∣∣∣∣ E
x∼D+

p(x)− E
x∼D−

p(x)

∣∣∣∣
=

∣∣∣∣(u∗)⊺(Σ+ − Σ−)v∗ + (t2u
∗ + t1v

∗) · ( E
x∼D+

xV − E
x∼D−

xV )

∣∣∣∣
=

∣∣∣∣∥(u∗)⊺v∗∥F
∥∥Σ+ − Σ−∥∥

F
+ ∥t2u∗ + t1v

∗∥2
∥∥∥∥ E
x∼D+

xV − E
x∼D−

xV

∥∥∥∥
2

∣∣∣∣ ≤ cγ4 ,

where c is a sufficiently small constant. From the γ-margin assumption, we have Ex∼D+ p(x) ≥ γ2.
Therefore, we must have Ex∼D− p(x) ≥ γ2/2. We show that in order to satisfy Ex∼D− p(x) ≥
γ2/2, we must have Prx∼D− [x ̸∈ B] = Ω(γ2). Notice that for any x ∈ supp(D−) and x ∈ B,
we must have either u∗ · x + t1 ≤ −γ or v∗ · x + t2 ≤ −γ. Suppose that u∗ · x + t1 ≤ −γ,
then we have u∗ · x ≤ −γ − t1 ≤ −γ (t1 ≥ 0 from Assumption 1). Combining the above with
u∗ · x = projvu

∗ · x+ projv⊥u∗ · x and |projvu∗ · x| ≤ |v · x| ≤ γ/2, we get projv⊥u∗ · x ≤ 0.
Notice that projv⊥u∗ · x = (u∗ · v⊥)(v⊥ · x) ≤ 0 and we assumed sign(v⊥ · u∗) ̸= sign(v⊥ · v∗),
then projv⊥v∗ · x = (v∗ · v⊥)(v⊥ · x) ≥ 0. Plug it into the equation below, we get

v∗·x+t2 = projvv
∗·x+projv⊥v∗·x+t2 ≥ (v·v∗)(v·x)+(v∗·v⊥)(v⊥·x)+t2 ≥ −γ/2+γ ≥ γ/2 ,

where the second from the last inequality comes from x ∈ B and t2 ≥ γ in Assumption 1. Similarly,
we can also show that for any x ∈ supp(D−) and x ∈ B, if u∗ ·x+t1 ≤ −γ, then v∗ ·x+t2 ≥ γ/2.
Combining the two cases, we get that for any x ∈ supp(D−) and x ∈ B,

p(x) = (u∗ · x+ t1)(v
∗ · x+ t2) ≤ −γ2/2 .

Therefore, we get

E
x∼D−

[p(x)] = E
x∼D−

[p(x) | x ∈ R] Pr
x∼D−

[x ∈ R] + E
x∼D−

[p(x) | x ̸∈ R] Pr
x∼D−

[x ̸∈ R]

≤− γ2/2 Pr
x∼D−

[x ∈ R] + Pr
x∼D−

[x ̸∈ R] .

Combining the above with that Ex∼D− p(x) ≥ γ2/2, we get Prx∼D− [x ̸∈ R] ≥ γ2/3. This
completes the proof.

B.4. Proof of Lemma 10 and Lemma 11

In this section, we present the proof of Lemma 10 and Lemma 11. For convenience, we restate the
lemmas as follows.

Lemma 27 (restatement of Lemma 10) Let h∗ = sign(u∗ · x + t1) ∧ sign(v∗ · x + t2) be the
target hypothesis of an instance of the problem of learning intersections of two halfspaces and D be
a distribution that is consistent with h∗ Under Assumption 1, the following polynomial

f∗(x) =
1

t sin θ
(u∗ · x− t sin θ)2(u∗ · x+ t sin θ)

satisfies f∗(x) ≥ 0,∀x ∈ supp(D+).
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Figure 4: Illustration for Lemma 10. The target intersection of two halfspace h∗ is plotted in black.
Colored lines represent the contours of the polynomial f∗. f∗(x) > 0 for every example x labeled
positive by h∗.

For a clear intuition, we plot the contour of the polynomial constructed in Lemma 10 in Figure 4.
Proof [Proof of Lemma 27] For every positive example x, we have u∗ ·x+ t1 = u∗ ·x+ t sin θ ≥ 0.
Thus, ∀x ∈ supp(D+),

f∗(x) =
1

t sin θ
(u∗ · x− t sin θ)2(u∗ · x+ t sin θ) ≥ 0.

Lemma 28 (restatement of Lemma 11) Let h∗ = sign(u∗ · x + t1) ∧ sign(v∗ · x + t2) be the
target hypothesis of an instance of the problem of learning intersections of two halfspaces and D be
a distribution that is consistent with h∗ Under Assumption 1, the following polynomial

f∗(x) = a0 + a1x1 + a2x2 − x2
2

a0 = (1 + σ) tan2 θt2

a1 = (2 + σ) tan2 θt

a2 = −σ tan θt

satisfies f∗(x) ≤ 0, ∀x ∈ supp(D−).

For a clear intuition, we plot the contour of the polynomial constructed in Lemma 11 in Figure 4.
Proof [Proof of Lemma 28]

To show for every x ∈ Rd such that h∗(x) = −1, f∗(x) ≤ 0., we partition the region of negative
examples N := {x | h∗(x) = −1} into regions N1 := {x ∈ V | x2 ≥ −σt tan θ/2,u∗ ·x+t1 ≤ 0}
and N2 := {x ∈ V | x2 ≤ −σt tan θ/2,v∗ · x+ t2 ≤ 0}, and show that in each region f∗(x) ≤ 0.
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We first consider the region N1 := {x ∈ V | x2 ≥ −σt tan θ/2,u∗ · x + t1 ≤ 0}. To start
with, we focus on examples that are on the boundary of N1. Let x be any example on the decision
boundary {x | u∗ · x+ t1 = 0}. By Assumption 1, we know that x satisfies x2 = tan θ(x1 + t). So,

f∗(x) = − tan2 θx2
1 + (a1 + a2 tan θ − 2t tan2 θ)x1 + (a0 + a2 tan θt− tan2 θt2)

= − tan2 θx2
1 ≤ 0. (4)

Thus, f∗(x) ≤ 0 for every x that satisfies u∗ · x+ t1 = 0. Based on (4), we show that f∗(x) ≤ 0
holds for every example x with x2 = −σt tan θ/2,x1 ≤ −(1 + σ/2) tan θt.

For every fixed x2, the partial derivative of f∗(x) with respect to x1 is

∂f∗(x)

∂x1
= a1 = (2 + σ) tan2 θt > 0. (5)

By (4), we know that the point x′ := (−(1 + σ/2) tan θt,−σt tan θ/2), the only vertex of the
region N1 satisfies f∗(x′) ≤ 0. This implies that f∗(x) ≤ 0 holds for every example x with
x2 = −σt tan θ/2,x1 ≤ −(1 + σ/2) tan θt.

So far, we have shown that f∗(x) ≤ 0 for every example x on the boundary of N1. We next show
that f∗(x) ≤ 0 holds for every example x in the interior of N1. Fix any x1, the partial derivative of
f∗(x) with respect to x2 is

∂f∗(x)

∂x2
= −2x2 + a2 = −2x2 − σ tan θt ≤ σ tan θt− σ tan θt = 0, (6)

when x2 ≥ −σt tan θ/2. Since f∗(x) ≤ 0 holds for every x on the boundary of N1, (6) implies that
f∗(x) ≤ 0 for every x in the interior of N1.

In the rest of the proof, we show that f∗(x) ≤ 0 for every x ∈ N2 = {x ∈ V | x2 ≤
−σt tan θ/2,v∗ ·x+ t2 ≤ 0}. Let x be any example on the decision boundary {x | v∗ ·x+ t2 = 0}.
By Assumption 1 of u∗ and t1, we know that x satisfies x2 = − tan θ(x1 + (1 + σ)t).

f∗(x) = − tan2 θx2
1 + (a1 − a2 tan θ − 2(1 + σ)t tan2 θ)x1

+ (a0 − (1 + σ) tan θta2 − (1 + σ)2 tan2 θt2)

= − tan2 θx2
1 ≤ 0.

Thus, f∗(x) ≤ 0 for every x that satisfies v∗ · x+ t2 = 0. Recall that f∗(x) ≤ 0 holds for every
example x with x2 = −σt tan θ/2,x1 ≤ −(1 + σ/2) tan θt. Thus, f∗(x) ≤ 0 for every example x
on the boundary of N2. We next show that f∗(x) ≤ 0 holds for every example x in the interior of
N2. Fix any x1, the partial derivative of f∗(x) with respect to x2 is

∂f∗(x)

∂x2
= −2x2 + a2 = −2x2 − σ tan θt ≥ σ tan θt− σ tan θt = 0, (7)

when x2 ≤ −σt tan θ/2. Since f∗(x) ≤ 0 holds for every x on the boundary of N2, (7) implies that
f∗(x) ≤ 0 for every x in the interior of N2.
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Figure 5: Illustration for Lemma 11. The target intersection of two halfspace h∗ is plotted in black. h∗

is symmetric according to the red dashed line x2 = −σt tan θ/2. The red dashed line partitions the
region of negative examples into two regions N1 := {x ∈ V | x2 ≥ −σt tan θ/2,u∗ · x+ t1 ≤ 0}
and N2 := {x ∈ V | x2 ≤ −σt tan θ/2,v∗ · x+ t2 ≤ 0}. Colored lines represent the contours of
the polynomial f∗. f∗(x) < 0 for every example x labeled negative by h∗.

B.5. Proof of Fact 1 and Fact 2

Fact 4 (restatement of Fact 1) Let h∗ = sign(u∗ ·x+t1)∧sign(v∗ ·x+t2) be the target hypothesis
of an instance of the problem of learning intersections of two halfspaces and D be a distribution
that is consistent with h∗ Under Assumption 1, if Ex∼D+(x) = 0,Ex∼D+ x⊗3 = 0 and for every
v ∈ Sd−1 ∩ V,Ex∼D+(v · x)2 = α2, then α2 ≤ t2 sin2 θ.

Proof [Proof of Fact 1]
For every x that is labeled positive by h∗, denote by p(x) the variable of the density of a

distribution D+ over Rd. Notice that any distribution D+ that satisfies the statement of Fact 1, gives
a feasible solution to the following LP (8). Thus, to upper bound the variance of D+, it is equivalent
to upper bound the optimal value of LP (8).

max α2

s.t.
∑
x

p(x)x = 0∑
x

p(x)xx⊺ = α2I∑
x

p(x)x⊗3 = 0∑
x

p(x) = 1

p(x) ≥ 0 ∀x

(8)
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To do this, we use an LP duality argument to derive a tight upper bound for the optimal value of
LP (8).

Write x ∈ V as x = x1e1 + x2e2 and x0 = 1 ∈ R for the simplicity of notation. Let
f(x) =

∑2
i,j,k=0 aijkxixjxk be a degree-3 polynomial defined over V = span{e1, e2}. The

coefficient of f(x) for the monomial xixjxk is denoted by aijk. The dual linear program to LP (1)
is defined by LP (2), whose variable is defined over the coefficients of f(x).

min a0

s.t. f(x) ≥ 0, ∀x ∈ supp(D+)

a11 + a22 = −1
(9)

Here, a11, a22 are coefficients of polynomial f with respect to monomials x2
1,x

2
2.

Every feasible solution to (9) defines a degree-3 polynomial f(x) such that f(x) ≥ 0 for every
example x that is labeled positive by h∗. In particular, by LP duality theory (Bertsimas and Tsitsiklis,
1997; Shapiro, 2001), the constant term a0 of any feasible polynomial f(x) to LP (9) gives an upper
bound for the optimal value α2 to LP (8). We explicitly construct the following polynomial feasible
to LP (9), with a small constant term.

f∗(x) =
1

t sin θ
(u∗ · x− t sin θ)2(u∗ · x+ t sin θ)

Notice that the constant term a0 = f∗(0) = t2 sin2 θ, which means if f∗(x) gives a feasible solution
to LP (8), then α2 ≤ f∗(0) = t2 sin2 θ. So, in the rest of the proof, we show that f∗(x) gives
a feasible solution to LP (9). By Lemma 10, we know that for every x such that h∗(x) = +1,
f∗(x) ≥ 0.

On the other hand, we show that the sum of coefficients of f∗(x) for monomials x2
1,x

2
2 is equal

to −1. Notice that

f∗(x) =
1

t sin θ

(
(u∗ · x)3 − t sin θ(u∗ · x)2 − (t sin θ)2(u∗ · x) + (t sin θ)3

)
,

where the sum of coefficients of f∗(x) for monomials x2
1,x

2
2 is −(u∗

1)
2 − (u∗

2)
2 = −∥u∗∥2 = −1.

This proves f∗(x) gives a feasible solution to (9).

Fact 5 (restatement of Fact 2) Let h∗ = sign(u∗ ·x+t1)∧sign(v∗ ·x+t2) be the target hypothesis
of an instance of the problem of learning intersections of two halfspaces and D be a distribution
that is consistent with h∗ Under Assumption 1, if Ex∼D− x = 0,Ex∼D− x⊗3 = 0 and for every
v ∈ Sd−1 ∩ V,Ex∼D−(v · x)2 = β2, then β2 ≥ (1 + σ)t2 tan2 θ.

Proof [Proof of Fact 2] For every x that is labeled negative by h∗, denote by p(x) the variable of the
density of a distribution D− over Rd. Notice that any distribution D− that satisfies the statement of
Fact 2, gives a feasible solution to the following LP (10). Thus, to lower bound the variance of D−,
it is equivalent to upper bound the optimal value of LP (10).
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min β2

s.t.
∑
x

p(x)x = 0∑
x

p(x)xx⊺ = β2I∑
x

p(x)x⊗3 = 0∑
x

p(x) = 1

p(x) ≥ 0 ∀x

(10)

To do this, we use an LP duality argument to derive a tight lower bound for the optimal value of
LP (10).

Write x ∈ V as x = x1e1 + x2e2 and x0 = 1 ∈ R for the simplicity of notation. Let
f(x) =

∑2
i,j,k=0 aijkxixjxk be a degree-3 polynomial defined over V = span{e1, e2}. The

coefficient of f(x) for the monomial xixjxk is denoted by aijk. The dual linear program to LP (10)
is defined by LP (11), whose variable is defined over the coefficients of f(x).

max a0

s.t. f(x) ≤ 0, ∀x ∈ supp(D−)

a11 + a22 = −1
(11)

Here, a11, a22 are coefficients of polynomial f with respect to monomial x21, x
2
2. Every feasible

solution to (11) defines a degree-3 polynomial f(x) such that f(x) ≤ 0 for every example x that
is labeled negative by h∗. In particular, by LP duality theory (Bertsimas and Tsitsiklis, 1997), the
constant term a0 of any feasible polynomial f(x) to LP (11) gives a lower bound for the optimal
value β2 to LP (10). We explicitly construct the following polynomial feasible to LP (11), with a
large constant term.

f∗(x) = a0 + a1x1 + a2x2 − x2
2

a0 = (1 + σ) tan2 θt2

a1 = (2 + σ) tan2 θt

a2 = −σ tan θt

Notice that the sum of coefficients of f∗(x) for monomials x2
1,x

2
2 is equal to −1 and by Lemma 11,

f(x) ≤ 0, ∀x ∈ supp(D−). As the constant term a0 of f∗(x) is equal to (1 + σ) tan2 θt2, this
concludes the proof of Fact 2.

B.6. Proof of Lemma 9

In this section, we give the Proof of Lemma 9. For convenience, we restate Lemma 9 as follows.
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Lemma 29 (restatement of Lemma 9) Let D be a distribution over B2(1)×{±1} that is consistent
with an instance of learning intersections of two halfspaces with γ-margin assumption. Let c > 0 be
any suitably large constant. Suppose

1. ∥Ex∼D+ x∥F ≤ γc, ∥Ex∼D− x∥F ≤ γc and ∥(Ex∼D+ −Ex∼D−)x∥F .

2. Ex∼D+ xx⊺ = α2I +∆+,Ex∼D− xx⊺ = α2I +∆−, where ∆+,∆− ∈ R2×2 are symmetric
matrices such that ∥∆+∥F ≤ γc, ∥∆−∥F ≤ γc and α2 > 0.

3.
∥∥(Ex∼D+ −Ex∼D−)x⊗3

∥∥
F
≤ γc

then
∥∥Ex∼D+ x⊗3

∥∥
F
≥ Ω(γ2),

∥∥Ex∼D− x⊗3
∥∥
F
≥ Ω(γ2).

Proof [Proof of Lemma 29] We prove Lemma 9 by contradiction. Assuming
∥∥ExV ∼D+ x⊗3

V

∥∥
F
≤

O(γ2) or
∥∥Ex∼D− x⊗3

V

∥∥
F
≤ O(γ2) holds. We show there is no α2 that can be used to fulfill the

second condition in the statement of Lemma 9.
For every x that is labeled positive by h∗, denote by p(x) the variable of the density of a

distribution D+ over Rd. Under margin assumption, every positive example x satisfies u∗ ·x+t1 ≥ γ
and v∗ · x + t2 ≥ γ. Denote by S+

γ := {x ∈ R2 | u∗ · x + t1 ≥ γ and v∗ · x + t2 ≥ γ}. Let
b = γc ≥ 0 be a small positive number that represents the level of perturbation for the LP (8). Notice
that Frobenius norm is always an upper bound of infinity norm. Thus, any distribution D+ that
satisfies the statement of Lemma 9 under the γ-margin assumption, gives a feasible solution to the
following LP (12).

max α2

s.t. − b ≤
∑
x

p(x)x1 ≤ b

− b ≤
∑
x

p(x)x2 ≤ b

− b ≤
∑
x

p(x)x2
1 − α2 ≤ b

− b ≤
∑
x

p(x)x2
2 − α2 ≤ b

− b ≤
∑
x

p(x)x1x2 ≤ b

− b ≤
∑
x

p(x)x3
1 ≤ b

− b ≤
∑
x

p(x)x2
1x2 ≤ b

− b ≤
∑
x

p(x)x1x
2
2 ≤ b

− b ≤
∑
x

p(x)x3
2 ≤ b∑

x

p(x) = 1

p(x) ≥ 0 ∀x ∈ S+
γ

(12)
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Write x ∈ V as x = x1e1 + x2e2 and x0 = 1 for the simplicity of notation. Let f(x) =∑2
i,j,k=0 aijkxixjxk be a degree-3 polynomial defined over V = span{e1, e2}. The coefficient of

f(x) for the monomial xixjxk is denoted by aijk. The dual linear program to LP (12) is defined by
LP (13), whose variable is defined over the coefficients of f(x).

min a0 + b(a1 + a2 + a11 + a22 + a111 + a112 + a122 + a222)

s.t. f(x) ≤ 0, ∀x ∈ S+
γ

a11 + a22 ≤ −1
(13)

We construct an upper bound for the optimal value α2 by constructing a feasible solution to (13) with
a small objective value. Consider the following polynomial

f∗(x) =
1

(t sin θ − γ/2)
(u∗ · x− (t sin θ − γ/2))2(u∗ · x+ (t sin θ − γ/2))

Under margin assumption, every positive example x satisfies u∗ · x+ t1 ≥ γ and v∗ · x+ t2 ≥ γ.
That is to say, D+ is also consistent with an intersection of halfspaces h′(x) = sign(u∗ · x+ t1 −
γ/2) ∧ sign(v∗ · x+ t2 − γ/2). Thus, f∗(x) ≥ 0 for every positive example by Lemma 10.

On the other hand,

f∗(x) =
1

(t sin θ − γ/2)

(
(u∗ · x)3 − (t sin θ − γ/2)(u∗ · x)2 − (t sin θ − γ/2)2(u∗ · x) + (t sin θ − γ/2)3

)
,

where the sum of coefficients of f∗(x) for monomials x2
1,x

2
2 is −(u∗

1)
2 − (u∗

2)
2 = −∥u∗∥2 = −1.

This proves f∗(x) gives a feasible solution to (13). Notice that t sin θ, the distance between the
origin and halfspace h∗1 is at least γ, otherwise, the origin is not labeled positive by h∗. On the
other hand, t sin θ ≤ 1, because otherwise, no example in B(1) is labeled negative and D− is not
well-defined under the γ-margin assumption. This implies the objective value corresponding to the
solution to LP (12) is

obj(f∗) := (t sin θ − γ/2)2 +
b

t sin θ − γ/2
((u∗

1)
3 + (u∗

1)
2u∗

2 + u∗
1(u

∗
2)

2 + (u∗
2)

3)− b(t sin θ − γ/2)(u∗
1 + u∗

2)

≤ t2 sin2 θ − γ/4 +O(b/γ)

≤ t2 sin2 θ − γ/8,

when b ≤ O(γ2). This implies that α2 ≤ t2 sin2 θ − Ω(γ)

On the other hand, we derive a lower bound for α2. For every x that is labeled negative by h∗,
denote by p(x) the variable of the density of a distribution D− over Rd. Denote by S−

γ := {x ∈
R2 | u∗ · x + t1 ≤ −γ or v∗ · x + t2 ≤ −γ}. Under γ-margin assumption, any example x with
h∗(x) = −1 satisfies x ∈ S−

γ . Let b = γc ≥ 0 be a small positive number that represents the level of
perturbation for the LP (10). Notice that Frobenius norm is always an upper bound of infinity norm.
Thus, any distribution D− that satisfies the statement of Lemma 9 under the γ-margin assumption.
Thus, to lower bound the variance of D−, it is equivalent to lower bound the optimal value of LP (14).
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min α2

s.t. − b ≤
∑
x

p(x)x1 ≤ b

− b ≤
∑
x

p(x)x2 ≤ b

− b ≤
∑
x

p(x)x2
1 − α2 ≤ b

− b ≤
∑
x

p(x)x2
2 − α2 ≤ b

− b ≤
∑
x

p(x)x1x2 ≤ b

− b ≤
∑
x

p(x)x3
1 ≤ b

− b ≤
∑
x

p(x)x2
1x2 ≤ b

− b ≤
∑
x

p(x)x1x
2
2 ≤ b

− b ≤
∑
x

p(x)x3
2 ≤ b∑

x

p(x) = 1

p(x) ≥ 0 ∀x ∈ S−
γ

(14)

To do this, we use an LP duality argument to derive a tight lower bound for the optimal value of
LP (10).

Write x ∈ V as x = x1e1 + x2e2 and x0 = 1 ∈ R for the simplicity of notation. Let
f(x) =

∑2
i,j,k=0 aijkxixjxk be a degree-3 polynomial defined over V = span{e1, e2}. The

coefficient of f(x) for the monomial xixjxk is denoted by aijk. The dual linear program to LP (10)
is defined by LP (11), whose variable is defined over the coefficients of f(x).

max a0 − b(a1 + a2 + a111 + a112 + a122 + a222)

s.t. f(x) ≤ 0, ∀x ∈ S−
γ

a11 + a22 ≥ −1
(15)

We construct a lower bound for the optimal value α2 by constructing a feasible solution to (14)
with a large objective value. Consider the following polynomial

f∗(x) = a0 + a1x1 + a2x2 − x2
2

a0 = (1 + σ) tan2 θt2

a1 = (2 + σ) tan2 θt

a2 = −σ tan θt
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By Lemma 11, we know that f∗(x) gives a feasible solution to (15). In the rest of the proof, we
show the feasible solution corresponds to f∗(x) has a large objective value. When b = γc < O(γ2),
the objective value is

obj(f∗) := (1 + σ) tan2 θt2 − b((2 + σ) tan2 θt− σ tan θt)

≥ (1 + σ) tan2 θt2 − b(2 + σ) tan2 θt = tan2 θt2(1 + σ − b(2 + σ)

t
)

≥ tan2 θt2(1 + σ − b(2 + σ)

t sin θ
) ≥ tan2 θt2(1 + σ − b(2 + σ)

γ
)

= tan2 θt2(1−O(γ)) + σ tan2 θt2(1−O(γ)) ≥ tan2 θt2(1−O(γ)).

Here, we use the fact that t sin θ > γ. We consider two cases. In the first case, cos2 θ ≤ 1−O(γ). In
this case, we have obj(f∗) ≥ sin2 θt2. In the second case, cos2 θ ≥ 1−O(γ). In this case, we have

obj(f∗) ≥ tan2 θt2 −O(γ) sin2 θt2 ≥ sin2 θt2 −O(γ) ≥ sin2 θt2 − γ/16.

Thus, we conclude α2 ≥ sin2 θt2 − γ/16.
To conclude the proof of Lemma 9, we without loss of generality to assume

∥∥Ex∼D−x⊗3
∥∥
F
≤

O(γc). Since Ex∼D+x⊗3 is close to Ex∼D−x⊗3, we know that D+ gives a feasible solution to
LP (12) with α2 ≤ t2 sin2 θ − Ω(γ) and D− gives a feasible solution to LP (12) with α2 ≥
sin2 θt2 − γ/16, which gives a contradiction.

B.7. Proof of Theorem 6

In this section, present the full proof of Theorem 6. For convenience, we restate Theorem 6 as
follows.

Theorem 30 (restatement of Theorem 6)
Let D be a distribution over B2(1) × {±1} that is consistent with an instance of learning

intersections of two halfspaces with γ-margin assumption. Let c > 0 be any suitably large constant.
Suppose

1. ∥Ex∼D+ x∥F , ∥Ex∼D− x∥F ≤ γc.

2. ∥(Ex∼D+ −Ex∼D+)xx⊺∥F ≤ γc

3.
∥∥(Ex∼D+ −Ex∼D−)x⊗3

∥∥
F
≤ γc,

then
∥∥Ex∼D+ x⊗3

∥∥
F
,
∥∥Ex∼D− x⊗3

∥∥
F
= Ω(γ15).

Proof [Proof of Theorem 30] For every example x ∈ V , we consider the following linear transforma-
tion of x.

x̃ :=
∥∥∥(Σ+)−1/2

∥∥∥−1

2
(Σ+)−1/2x,
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Notice that

∥x̃∥2 =
∥∥∥(Σ+)−1/2

∥∥∥−1

2

∥∥∥(Σ+)−1/2x
∥∥∥
2
≤
∥∥∥(Σ+)−1/2

∥∥∥−1

2

∥∥∥(Σ+)−1/2
∥∥∥
2
∥x∥2 ≤ 1

Denote by y(x̃) := h∗(x), we will show that x̃ is labeled by another intersections of two halfspaces
h̃(x̃) = h̃1(x̃) ∧ h̃2(x̃) with poly(γ)-margin assumption. Consider the first ground truth halfspace
h∗1 := sign(u∗ · x+ t1). We have

h∗1(x) = sign (u∗ · x+ t1) = sign
(
(Σ+)1/2u∗ · (Σ+)−1/2x+ t1

)
= sign

(∥∥∥(Σ+)−1/2
∥∥∥
2
(Σ+)1/2u∗ ·

∥∥∥(Σ+)−1/2
∥∥∥−1

2
(Σ+)−1/2x+ t1

)
= sign

(
u′ · x̃+ t1

)
= sign

(
ũ · x̃+ t1/

∥∥u′∥∥
2

)
= h̃1(x̃).

Here u′ :=
∥∥(Σ+)−1/2

∥∥
2
Σ1/2u∗ and ũ = u′/ ∥u′∥2. Since

∥∥(Σ+)1/2
∥∥
2
≤ 1 and by Lemma 8,∥∥(Σ+)−1/2

∥∥
2
≤ γ−2, we know that ∥u′∥2 ≤ γ−2. Since x satisfies γ-margin assumption with

respect to h∗ and ∥u′∥2 ≤ γ−2, we know that∣∣ũ · x̃+ t1/
∥∥u′∥∥

2

∣∣ = ∣∣u′ · x̃+ t1
∣∣ / ∥∥u′∥∥

2
= |u∗ · x+ t1| /

∥∥u′∥∥
2
≥ γ/

∥∥u′∥∥
2
= γ3.

Similarly, for the second ground truth halfspace h∗2 := sign(v∗ · x+ t2), we have

h∗2(x) = sign (v∗ · x+ t2) = sign
(
(Σ+)1/2v∗ · (Σ+)−1/2x+ t2

)
= sign

(∥∥∥(Σ+)−1/2
∥∥∥
2
(Σ+)1/2v∗ ·

∥∥∥(Σ+)−1/2
∥∥∥−1

2
(Σ+)−1/2x+ t2

)
= sign

(
v′ · x̃+ t2

)
= sign

(
ṽ · x̃+ t2/

∥∥v′∥∥
2

)
= h̃2(x̃).

Here v′ :=
∥∥(Σ+)−1/2

∥∥
2
Σ1/2v∗ and ṽ = v′/ ∥v′∥2. Since

∥∥(Σ+)1/2
∥∥
2
≤ 1 and by Lemma 8,∥∥(Σ+)−1/2

∥∥
2
≤ γ−2, we know that ∥v′∥2 ≤ γ−2. Since x satisfies γ-margin assumption with

respect to h∗ and ∥v′∥2 ≤ γ−2, we know that∣∣ṽ · x̃+ t1/
∥∥v′∥∥

2

∣∣ = ∣∣v′ · x̃+ t2
∣∣ / ∥∥v′∥∥

2
= |v∗ · x+ t1| /

∥∥v′∥∥ ≥ γ/
∥∥v′∥∥ = γ3.

This implies that x̃ is labeled by an intersections of two halfspaces h̃(x̃) = h̃1(x̃) ∧ h̃2(x̃) with
γ3-margin assumption.

Next, we show that the marginal distribution of x̃ satisfies the conditions in the statement of
Lemma 9. Recall that the linear transformation x̃ preserves the labels of x. Consider the distributions
of x̃ with positive labels. We have∥∥∥∥ E

x∼D+
x̃

∥∥∥∥
2

= E
x∼D+

∥∥∥∥∥∥∥(Σ+)−1/2
∥∥∥−1

2
(Σ+)−1/2x

∥∥∥∥ =
∥∥∥(Σ+)−1/2

∥∥∥−1

2

∥∥∥∥ E
x∼D+

(Σ+)−1/2x

∥∥∥∥
2

≤
∥∥∥(Σ+)−1/2

∥∥∥−1

2

∥∥∥(Σ+)−1/2
∥∥∥
2

∥∥∥∥ E
x∼D+

x

∥∥∥∥
2

=

∥∥∥∥ E
x∼D+

x

∥∥∥∥
2

≤ γc.
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Similarly, consider the distributions of x̃ with positive labels. We have∥∥∥∥ E
x∼D−

x̃

∥∥∥∥
2

= E
x∼D−

∥∥∥∥∥∥∥(Σ+)−1/2
∥∥∥−1

2
(Σ+)−1/2x

∥∥∥∥
2

=
∥∥∥(Σ+)−1/2

∥∥∥−1

2

∥∥∥∥ E
x∼D−

(Σ+)−1/2x

∥∥∥∥
2

≤
∥∥∥(Σ−)−1/2

∥∥∥−1

2

∥∥∥(Σ+)−1/2
∥∥∥
2

∥∥∥∥ E
x∼D−

x

∥∥∥∥
2

=

∥∥∥∥ E
x∼D−

x

∥∥∥∥
2

≤ γc.

Thus, x̃ satisfies the first condition of Lemma 9. We next show that x̃ satisfies the second condition
of Lemma 9. The covariance matrix of the positive x̃ is

E
x∼D+

x̃x̃⊺ =
∥∥(Σ+)−1

∥∥−1

2
(Σ+)−1/2 E

x∼D+
xx⊺(Σ+)−1/2 =

∥∥(Σ+)−1
2

∥∥−1
I.

On the other hand, the covariance of the negative x̃ is

E
x∼D−

x̃x̃⊺ =
∥∥(Σ+)−1

∥∥−1

2
(Σ+)−1/2 E

x∼D−
xx⊺(Σ+)−1/2 =

∥∥(Σ+)−1
∥∥−1

2
(Σ+)−1/2Σ−(Σ+)−1/2

=
∥∥(Σ+)−1

∥∥−1

2
(Σ+)−1/2Σ+(Σ+)−1/2 −

∥∥(Σ+)−1
∥∥−1

2
(Σ+)−1/2(Σ+ − Σ−)(Σ+)−1/2

=
∥∥(Σ+)−1

∥∥−1

2
I −

∥∥(Σ+)−1
∥∥−1

2
(Σ+)−1/2(Σ+ − Σ−)(Σ+)−1/2.

Since ∥(Σ+ − Σ−)∥F ≤ γc, we know that∥∥∥∥( E
x∼D+

− E
x∼D−

)x̃x̃⊺

∥∥∥∥
F

=
∥∥∥∥∥(Σ+)−1

∥∥−1

2
(Σ+)−1/2(Σ+ − Σ−)(Σ+)−1/2

∥∥∥
F
≤
∥∥(Σ+ − Σ−)

∥∥
F
≤ γc.

Thus, the marginal distribution of x̃ satisfies the conditions in the statement of Lemma 9.
Finally, we show the third condition of Lemma 9 holds. We have∥∥∥∥( E

x∼D+
− E

x∼D−
)x̃⊗3

∥∥∥∥
F

=

∥∥∥∥∥∥∥(Σ+)−1/2
∥∥∥−3

2
((Σ+)−1/2)⊗3

(
E

x∼D+
x⊗3 − E

x∼D−
x⊗3

)∥∥∥∥
F

≤ O(

∥∥∥∥( E
x∼D+

x⊗3 − E
x∼D−

x⊗3

)∥∥∥∥
F

) ≤ γc.

Thus, the third condition in the statement of Lemma 9 holds for x̃. By Lemma 9,
∥∥Ex∼D+ x̃⊗3

∥∥
F
≥

Ω(γ6),
∥∥Ex∼D− x̃⊗3

∥∥
F
≥ Ω(γ6). By Lemma 8, we know that

∥∥(Σ+)−1/2
∥∥
F
≤ O(γ2). Thus,∥∥ExV ∼D+ x⊗3

V

∥∥
F
≥ Ω(γ15),

∥∥Ex∼D− x⊗3
V

∥∥
F
≥ Ω(γ15).

Appendix C. Omitted Proofs from Section 3

C.1. Proof of Theorem 12

In this section, we present the proof of Theorem 12. The algorithm we will analyze is Algorithm 2.
For convenience, we restate Theorem 12 below.

Theorem 31 (restatement of Theorem 12) There is a learning algorithm A such that for every
c, a suitably large constant and any instance of learning intersections of two halfspaces under
factorizable distribution with γ-margin assumption if the input distribution D satisfies
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Algorithm 2 SQ-DIRECTION FINDING (SQ-efficient algorithm for finding relevant direction with
matched moments)

1: Input: γ ∈ (0, 1) and i.i.d. sample access to a distribution D on Bd(1)×{±1} that is an instance
of learning intersections of halfspaces under product distribution. Suppose that D satisfies the
conditions in the statement of Theorem 12.

2: Output: O, a list of poly(d), w ∈ Sd−1 such that at least one of w ∈ O satisfies ∥projV ⊥w∥ ≤
poly(γ).

3: Take S1, a set of m1 = poly(d/γ) i.i.d. samples from DX to estimate µ := Ex∼DX
x with

µ̂ :=
1

m1

∑
x∈S1

x

up to poly(γ/d) error
4: Take S, a set of N = poly(d/γ) i.i.d. samples from DX and estimate

T̂ =
1

N

∑
x∈S

(x− µ̂)⊗3

5: Define f̂ : Sd−1 → R as f̂(u) := T̂ · u⊗3 = Êx∼S ((x− µ̂) · u)3.
6: O := ∅
7: for t = 1, . . . , T = poly(d) do
8: Find a (γ/d)c

′
-approximate solution ut to f̂ such that for every u ∈ O, |ut · u| ≤ poly(γ/d),

where c′ > 0 is a large constant.
9: O ← O ∪ {ut}. (If no such ut is found, return O)

10: return O

1. ∥(Ex∼D+ −Ex∼D−)x∥F ≤ γc.

2. ∥(Ex∼D+ −Ex∼D−)xx⊺∥F ≤ γc

3.
∥∥(Ex∼D+ −Ex∼D−)x⊗3

∥∥
F
≤ γc

then it makes poly(d, 1/γ) many statistical queries, where each query has tolerance at most
poly(1/d, γ) and outputs a list of poly(d/γ) directions w ∈ Rd such that one w in the list satisfies
∥wW ∥2 ≤ poly(γ/d).

Notice that Algorithm 2 only uses poly(d/γ) i.i.d. unlabeled examples drawn from DX to
estimate the mean and third-moment tensor of DX up to poly(γ/d) accuracy, thus these steps can
be implemented via poly(d) SQs, each of which has tolerance poly(γ/d). For detailed background
about the SQ model, we refer the reader to Section A.

Here, we give an overview of the proof of Theorem 12. To simplify the notation, we define
η-approximate solution for a polynomial function defined over the unit sphere.

Definition 32 (η-approximate solution) Let f : Sd−1 → R be a polynomial function. For η > 0
and u ∈ Sd−1, we say a point u ∈ Sd−1 is a η-approximate solution if

1. f(u) ≥ η0 = Ω(η)
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2. ∥proju⊥∇f(u)∥ ≤ η1 = O(η2)

3. maxz∈S(d−1)∩u⊥ z⊺∇2f(u)z ≤ η2 = O(η2)

Recall the observation obtained by Vempala and Xiao (2011) summarized as Fact 6.

Fact 6 (Lemma 4 in Vempala and Xiao (2011)) Let DX = DV ×DW be factorizable distribution
over Rd such that DX has the same m− 1(m ≥ 3) moments as Gaussian but has a different mth
moment. Then any local maximum(minimum) u∗ of f∗(u∗) over Sd−1 with f∗(u∗) > γm(f∗(u∗) <
γm) must be either in V or W . Here f∗(u) = Ex∼D(u · x)m and γm is the m-th moment of a
standard 1-dimensional Gaussian distribution.

The first ingredient of the proof is to show a robust version of Fact 6 for the polynomial
f∗(u) = T ∗ · u⊗3 = Ex∼DX

(x · u)3. That is to say, given Ex∼DX
(x) is close to 0, any poly(γ/d)

approximate solution to f∗ must be poly(γ/d)-close to V or W . In particular, by Theorem 6, the
moment tensor of DV must have norm at least γc for some constant c, which implies that some
point in V must be a poly(γ/d)-approximate solution to f∗. On the other hand, since a polynomial
function is completely described by its moment tensor. By estimating each entry of the moment
tensor up to error poly(γ/d) error, the approximate objective function f̂ has a similar structure as
the one of f∗ and optimizing f̂ is enough to give us an approximate solution to f∗.

The second ingredient is the key difference from the prior work (Frieze et al., 1996; Vempala
and Xiao, 2011). After obtaining the first approximate solution u1, instead of restricting f̂ over the
subspace (u1)

⊥, we will look at a small band B = {x ∈ Sd−1 | |u1 · x| ≤ poly(γ/d)}. As long as
no u, a poly(γ/d) approximate solution close to V is added to the list O, we must be able to add
another point toO. By Alon (2003), if each pair of u,u′ ∈ O satisfies |u · u′| ≤ poly(γ/d), the size
of O is at most poly(d/γ). This implies that Algorithm 2 can terminate. Now we are able to present
the full proof.
Proof [Proof of Theorem 31] To start with, we consider the case where we have the exact access to
the moment tensor of DX . Without loss of generality, we assume ∥µ := Ex∼DX

x∥2 ≤ o((γ/d)2c1)
for some large constant c1 > c, because otherwise, we can estimate µ up to error (γ/d)2c1 and shift
DX to µ and rescale each shifted example by a factor of 2 to make ∥x∥2 ≤ 1. This will only decrease
the margin γ by a factor of at most 2. Let T ∗ := Ex∼DX

x⊗3 be the 3rd moment tensor of DX and
f∗(u) = T ∗ · u⊗3 = Ex∼DX

(x · u)3.
Consider any u ∈ S(d−1). We write u = su0

V + tu0
W , where s ≥ 0, t ≥ 0, s2 + t2 = 1 and

u0
V := uV / ∥uV ∥ ,u0

W := uW / ∥uW ∥. We show that if u is an η := (γ/d)c1 approximate solution
to f∗, then ∥uW ∥ ≤ poly(γ/d) or ∥uW ∥ ≤ poly(γ/d). Observe that

f∗(u) = E
x∼DX

(x · u)3 = E
x∼DX

(xV · uV + xW · uW )3

= E
x∼DX

(xV · uV )
3 + (xW · uW )3 + 3(xV · uV )(xW · uW )2 + 3(xV · uV )

2(xW · uW )

= g∗(u) + h∗(u).

Here, g∗(u) = Ex∼DX
(xV · uV )

3 + (xW · uW )3 and h∗(u) = Ex∼DX
3(xV · uV )(xW · uW )2 +

3(xV · uV )
2(xW · uW ).

In particular, since ∥µ∥ ≤ (γ/d)2c1 and D is factorizable, we know that h∗ is a degree-3
polynomial that can be characterized with a tensor with Frobenius norm at most o((γ/d)c1).
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Write

g∗(u) = E
x∼DX

(xV · uV )
3 + (xW · uW )3 = s3 E

x∼DX

(xV · u0
V )

3 + t3 E
x∼DX

(xW · u0
W )3.

For simplicity, we define aV := Ex∼DX
(xV · u0

V )
3, aW := Ex∼DX

(xW · u0
W )3. By the symmetry

of g∗, without loss of generality, we assume aV ≥ 0.
We consider two cases. In the first case, we assume aW ≤ 0.
Since f∗(u) ≥ η0 and h∗(u) ≤ η, we know that aV ≥ η0/2 and s3 ≥ η0/2. Consider point

z := tu0
V − su0

W ∈ S(d−1) ∩ u⊥. Since∇f∗(u) = ∇g∗(u) +∇h∗(u) and

∇g∗(u) = 3 E
x∼DX

(
(xV · uV )

2xV + (xW · uW )2xW

)
,

we have

∇f∗(u) · z = ∇g∗(u) · z+∇h∗(u) · z = 3(ts2aV − st2aW ) +∇h∗(u) · z ≥ 3ts2aV − o((γ/d)c1).

Since ∥proju⊥∇f∗(u)∥ ≤ η1, we know that

3ts2aV ≤ ∇f∗(u) · z+ o((γ/d)c1) ≤ O(η1).

Because aV ≥ γ0/2 and s3 ≥ γ0/2, this implies s ≥ 1− poly(γ/d). Thus, ∥uW ∥ ≤ poly(γ/d).
In the second case, we have aW ≥ 0 and aV ≥ 0. By symmetry, without loss of generality, we

assume aV ≥ aW ≥ 0. We will show that if s ≥ (γ/d)c1 and t ≥ (γ/d)c1 , and ∥proju⊥∇f∗(u)∥ ≤
η1, then maxz∈S(d−1)∩u⊥ z⊺∇2f∗(u)z must be sufficiently large, which gives a contradiction.

Observe that

∇2g∗(u) = 6 E
x∼DX

(
(xV · uV )xV x

⊺
V + (xW · uW )xWx⊺

W

)
.

Recall that z := tu0
V − su0

W ∈ S(d−1) ∩ u⊥. We have

z⊺∇2f∗(u)z = z⊺∇2g∗(u)z+ z⊺∇2h∗(u)z = 6st2aV + 6s2taW + z⊺∇2h∗(u)z

= 6s3(t2/s2)aV + 6t3(s2/t2)aW + z⊺∇2h∗(u)z

≥ (γ/d)c1η0/2− o((γ/d)2c1),

which gives a contradiction to the fact that u is a (γ/d)c1-approximate solution. Thus, we have
t ≤ poly(γ/d) and s ≥ 1− poly(γ/d).

So far, we have shown that if any point u ∈ S(d−1) that is a η-approximate solution to f∗ must
be poly(γ/d)-close to either V or W . We next show that there must be a point that is close to V and
is a η-approximate solution to f∗. Since DX satisfies the statement of Theorem 6, we know that∥∥∥Ex∼D+

X
x⊗3
V

∥∥∥ ≥ Ω(γ15),
∥∥∥Ex∼D−

X
x⊗3
V

∥∥∥ ≥ Ω(γ15). This implies that
∥∥Ex∼DV

x⊗3
∥∥ ≥ Ω(γc),

which implies that maxu∈S(d−1)∩V f∗(u) ≥ Ω(γc). Here c is a constant smaller than c1.
Let u∗ ∈ S(d−1) ∩ V such that g∗(u∗) = maxu∈S(d−1)∩V g∗(u). Since u∗ is a maximal solution

of g∗(u) restricted at V , we know that
∥∥∥proj(u∗)⊥∇g∗(u∗)

∥∥∥ = 0 and maxz∈S(d−1)∩(u∗)⊥ z⊺∇2g∗(u∗)z =

0. Since
∥∥Ex∼DV

x⊗3
∥∥ ≥ Ω(γc), we know that g∗(u∗) ≥ Ω(γc). Since f∗ = g∗ + h∗ and h∗ is a

degree-3 polynomial with o((γ/d)c1)-small magnitude, we know that u∗ must be an η-approximate
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solution to f∗. In particular, f∗ can be completely described by its moment tensor. Thus, by esti-
mating each entry of the moment tensor of DX up to poly(γ/d) error, we obtain that f̂ is a good
approximation for f∗. Thus, any (γ/d)c

′
-approximate solution for f̂ , with some c′ slightly larger

than c1, must be a (γ/d)c1-approximate solution for f∗. So, any (γ/d)c
′
-approximate solution for f̂

must be also close to V or W .
Finally, we show that the output O has poly(d/γ) size and at least one of the solution in O is

poly(γ/d) close to V . Here, we will make use of the following lemma.

Fact 7 (Theorem 9.3 in Alon (2003)) Let A ∈ Rn×n such that for all i ∈ [n], Aii = 1 and
|Aij | ≤ ϵ with 1/

√
n ≤ ϵ < 1/2 for all i ̸= j. Then

rank(A) ≥ Ω(
1

ϵ2 log(1/ϵ)
log(n)).

Denote by n the size of O and consider the matrix A ∈ Rn×n where Aij = ui · uj . Since each
ut ∈ Rd for t ∈ [d], we know the rank of A is at most d. Furthermore, by the construction
of O, we know that for every i, j ∈ [n], if i = j, then Aij = ui · uj = 1 and if i ̸= j, then
|Aij | = |ui · uj | ≤ ϵ := (γ/d)c1 . If n ≥ ϵ−3 = (γ/d)−3c1 , then by Fact 7, we know that

1

ϵ2 log(1/ϵ)
log(n) = Ω((d/γ)c1) > d,

which gives a contradiction. Thus, n ≤ poly(d/γ).
On the other hand, let ui be a vector that is poly(γ/d)-close to V and uj be a vector that is

poly(γ/d)-close to W , then |ui · uj | ≤ poly(γ/d). Thus, if O does not contain a point v that is
poly(γ/d)-close to V , there must be another point u that is nearly orthogonal to all points in O and
will be added to O by Algorithm 2. This proves Theorem 12.

C.2. Proof of Theorem 13

In this section, we give the proof of Theorem 13. To begin with, we present the main algorithm and
restate the Theorem 13 for convenience.

Theorem 33 (restatement of Theorem 13)
There is a learning algorithm A such that for every c, a suitably large constant and any instance

of learning intersections of two halfspaces under factorizable distribution with γ-margin assumption
if the input distribution D satisfies

1. ∥(Ex∼D+ −Ex∼D−)x∥F ≤ γc.

2. ∥(Ex∼D+ −Ex∼D−)xx⊺∥F ≤ γc

3.
∥∥(Ex∼D+ −Ex∼D−)x⊗3

∥∥
F
≤ γc

A runs in poly(d, 1/γ) time and outputs a list of d unit vectors O such that at least one direction
w ∈ O satisfies ∥wW ∥2 ≤ poly(γ) with probability Ω(γ/d).
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Algorithm 3 TENSORDIRECTIONFINDING (Efficient algorithm for finding relevant direction with
matched moments)

1: Input: γ ∈ (0, 1) and i.i.d. sample access to a distribution D on Bd(1)×{±1} that is an instance
of learning intersections of halfspaces under product distribution. Suppose that D satisfies the
conditions in the statement of Theorem 13.

2: Output: O, a list of poly(d), w ∈ Sd−1 such that at least one of w ∈ O satisfies ∥projV ⊥w∥ ≤
poly(γ).

3: Take S1, a set of m1 = poly(d/γ) i.i.d. samples from DX to estimate µ := Ex∼DX
x with

µ̂ :=
1

m1

∑
x∈S1

x

up to poly(γ) error
4: Take S, a set of N = poly(d/γ) i.i.d. samples from DX and estimate

T̂ =
1

N

∑
x∈S

(x− µ̂)⊗3

5: Let v ∼ N(0, 1dI) be a random Gaussian vector in Rd

6: Define M̂ := T̂ · v.
7: Compute O, the set of d eigenvectors of M̂ via eigen-decomposition algorithm.
8: return O

The algorithm we will analyze is Algorithm 3.
Proof [Proof of Theorem 33] We consider the central third moment tensor T ∗ := Ex∼DX

(x− µ)⊗3.
Since ∥µ∥2 ≤ 1, we can without loss of generality assume µ = 0, because shifting DX to µ and
rescaling the distribution will only decrease the margin assumption γ by a factor of 2. Under this
assumption, we have

T ∗ = E
x∼DX

x⊗3 = E
x∼DX

(xV + xW )⊗3 = E
x∼DV

x⊗3
V + E

x∼DW

x⊗3
W .

Here the second equation follows by the fact that DV , DW are independent and have zero-mean. To
simplify the notation, we denote by TV = Ex∼DV

x⊗3
V and TW = Ex∼DW

x⊗3
W .

Let v ∼ N(0, 1dI) be a Gaussian vector. Define random matrix M ∈ Rd×d as

M := T ∗ · v = E
x∼DV

xV x
⊺
V (xV · v) + E

x∼DW

xWx⊺
W (xW · v)

= E
x∼DV

xV x
⊺
V (xV · vV ) + E

x∼DW

xWx⊺
W (xW · vW ).

To simplify the notation, we denote by MV = Ex∼DV
xV x

⊺
V (xV ·vV ) and MW = Ex∼DW

xWx⊺
W (xW ·

vW ). We write the random vector vV = αv0
V , where the random variable α = ∥vV ∥ and the random

vector v0
V = vV / ∥vV ∥ is drawn uniformly from S(d−1) ∩ V . Denote by σ1, σ2 be two eigenvalues

of the random matrix MV /α such that |σ1| ≥ |σ2| and denote by u(1),u(2) the corresponding
eigenvectors to σ1, σ2. Notice that for i ∈ [2],

Mu(i) = MV u
(i) +MWu(i) = MV u

(i) = ασiu
(i).

41



DIAKONIKOLAS MA REN TZAMOS

This implies u(i) is an eigenvector of M with eigenvalue ασ(i). Furthermore, if ασi for some i ∈ [2]
is not close to any eigenvalue of MW , then one of the eigenvectors of M must be in V and we can
find it via PCA. Next, we show this holds for our case. By Theorem 6, we know that ∥TV ∥F ≥ γc,
for some constant c > 0, which implies there is some vector u∗ ∈ S(d−1) ∩ V such that

TV · (u∗)⊗3 = E
x∼DV

(xV · u∗)3 ≥ Ω(γc).

Since v0
V is drawn uniformly from Sd−1 ∩ V , we know that

Pr
(∥∥u∗ − v0

V

∥∥ ≤ γc/10
)
≥ Pr

(
sin θ(u∗,v0

V ) ≤ γc/10
)
≥ Ω(γc).

Given this happens, we show that σ1 ≥ γc by showing that (v0
V )

⊺(MV /α)v
0
V ≥ Ω(γc). We have

(v0
V )

⊺MV v
0
V = T ∗ · (v0

V )
⊗3 = T ∗ · (u∗)⊗3 − T ∗ ·

(
(v0

V )
⊗3 − (u∗)⊗3

)
= T ∗ · (u∗)⊗3 − E

x∼DV

(
(x · v0

V )
3 − (x · u∗)3

)
≥ Ω(γc),

where the inequality follows the fact that the polynomial function Ex∼DV
(x · u)3 is O(1)-Lipschitz

with respect to u. Thus, with a probability at least Ω(γc), σ1 ≥ γc/2. However, we have no structural
result that can guarantee σ2 is also large. Thus, in the rest of the proof, we consider two cases and
argue that in each case, the eigenvalues of MV are far from the eigenvalues of MW .

In the first case, we assume that σ1 − σ2 ≥ γc/4. Since MV and MW are independent, we
consider the d − 2 eigenvalues of MW , σ3, . . . , σd. Recall that the two eigenvalues of MV are
ασ1 and ασ2. For each i ∈ {3, . . . , d}, we associate each σi and interval Ii = [σi − ξ, σi + ξ],
where ξ > 0 will be determined later. Notice that ασ1 ∈ Ii if and only if

√
dα ∈ [

√
dσi/σ1 −√

dξ/σ1,
√
dσi/σ1 +

√
dξ/σ1]. Since v ∼ N(0, 1dI), and vV is the 2-dimensional projection onto

the subspace V , we know that dα2 ∼ χ(2) is a χ-distribution with degree of freedom 2. Recall that
χ(2) is a distribution supported over R+ with density function p(x) = x exp(−x2/2) ≤ 1, ∀x ≥ 0.
This implies that

Pr(ασ1 ∈ Ii) ≤ 2
√
dξ/σ1,∀i ∈ {3, . . . , d} (16)

On the other hand,

Pr(|ασ1 − ασ2| ≤ ξ) = Pr(α ≤ ξ/ |σ1 − σ2|) ≤ O(ξ/ |σ1 − σ2|).

By choosing ξ = O(γ2c/d), we know that with probability at least 1 − O(γ2c), ασ1, the largest
eigenvalue of MV is ξ-far from any other eigenvalues of M .

In the second case, we assume σ1 − σ2 ≤ γc/4, which implies that σ2 ≥ γc/4. Recall that the
two eigenvalues of MV are ασ1 and ασ2. With the same proof as (16), we know that

Pr(ασ2 ∈ Ii) ≤ 2
√
dξ/σ2,∀i ∈ {3, . . . , d}. (17)

By choosing ξ = O(γ2c/d), we know that with probability at least 1−O(γ2c), ασ1, ασ2, the two
eigenvalues of MV are ξ-far from any other eigenvalues of MW .

To finish the proof of Theorem 13, we make use of the well-known Davis-Kahan sin θ theorem.
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Theorem 34 (Davis-Kahan sin θ Theorem) Let A = E0A0E
⊺
0 +E1A1E

⊺
1 , A+H = F0B0F

⊺
0 +

F1B1F
⊺
1 ∈ Rd×d be symmetric matrices, where (E0, E1), (F0, F1) are orthogonal matrices and

A0, A1, B0, B1 are diagonal matrices. If every eigenvalues of A0 are δ-far from the eigenvalues of
A1, then

∥F ⊺
0E1∥2 ≤

∥H∥2
δ

.

Since v ∼ N(0, 1dI), by Vershynin (2018), we know that with probability at least 1− γd, ∥v∥2 ≤
1 + log(1/γ). Since by taking poly(d/γ) samples from DX , we are able to estimate each entry of
T ∗ with T̂ up to error poly(γ/d). Thus, given ∥v∥2 ≤ 1 + log(1/γ),

∥∥∥M − M̂
∥∥∥
2
≤ (γ/d)3c.

Recall that we have discussed two cases for the behavior of the eigenvalues of MV . In the first
case, the largest eigenvalue ασ1 is γ2c/d far from any other eigenvalues of M . Using Theorem 34
by taking A = M,A+H = M̂,E0 = u(1), we know that there is an eigenvector of M̂ , ˆu(1) such
that

∥∥∥ ˆu(1)
W

∥∥∥ ≤ γc. In the second case the two eigenvalues ασ1, ασ2 are γ2c/d far from any other

eigenvalues of MW , using Theorem 34 by taking A = M,A+H = M̂,E0 = [u(1),u(2)], we know
that there is an eigenvector of M̂ , ˆu(1) such that

∥∥∥ ˆu(1)
W

∥∥∥ ≤ γc. Thus, with probability at least
Ω(γc), Algorithm 3 outputs a list of d unit vectors such that at least one of them is γc close to V .

Remark In general, given the estimated moment tensor M̂ , there is no polynomial time algorithm
that can exactly compute all eigenvectors of M̂ due to the roundoff error. However, as long as the
roundoff error is at most poly(γ/d), one can compute in polynomial time an eigen-decomposition
that is poly(γ/d) close to M̂ . We refer the readers to Dhillon et al. (2006) for detailed guarantee of
efficient algorithms for eigen-decomposition that takes the roundoff error into consideration.

Appendix D. Omitted Proofs from Section 3.2

This section is dedicated to proving Theorem 14. The main algorithm we will analyze is Algorithm 4.

D.1. Approximate Local Optimum Implies Relevant Direction

The following definition plays a core role of the proof.

Definition 35 ((α, η)-approximate solution) Let f : Rd → R be a real-valued function and α, η >
0. We say that w ∈ Sd−1 is an (α, η)-approximate solution to the problem maxw∈Sd−1 f(w) if
satisfies the following conditions: (1) ∥projw⊥∇f(w)∥2 ≤ η, and (2) |f(w)| ≥ α.

Suppose we have access to the exact function f(u) = u⊗m · T where T = Ex∼D+ [x⊗m
V ] −

Ex∼D− [x⊗m
V ]. If the first m − 1 moments are highly matched, then finding an approximate local

maximum u∗ of f implies that u∗ is close to V .

Lemma 36 Let α, η, ξ > 0, m ∈ Z+ and D be a joint distribution of (x, y) on Bd(1) × {±1}
that is an instance of learning intersections of halfspaces under factorizable distribution with γ-
margins. Suppose D does not satisfy (ξ,m)-moment matching condition. Let f(u) = u⊗m · T
where T = Ex∼D+ [x⊗m

V ]−Ex∼D− [x⊗m
V ]. Then any u∗ that is an (α, η)-approximate solution to

maxu∈Sd−1 f(u) must satisfy ∥u∗
W ∥2 ≤ η/(mα)
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Algorithm 4 DIRECTIONFINDING (Relevant direction extraction with Mismatched Moments)

1: Input: α ∈ (0, 1),m ∈ {1, 2, 3} and i.i.d. sample access to a distribution D on Bd(1)× {±1}
that is an instance of learning intersections of halfspaces under product distribution. Suppose D
does not satisfy the (α,m)-moment matching condition and D satisfies the (α2/dc, t)-moment
matching condition for any t ≤ m− 1 and a sufficiently large universal constant c.

2: Output: With 2/3 probability, the algorithm outputs a unit vector u ∈ Sd−1 such that ∥uW ∥ =
O(α).

3: Define T = Ex∼D+ x⊗m
V −ExV ∼D− x⊗m

V . We will use T̂ as an empirical estimation of T . Set
ζ = α/dc−1. Draw N = poly(d, 1/α) i.i.d. samples S+ and S− from D+ and D− respectively.
Then estimate

T̂ =
1

N

∑
x∈S+

x⊗m − 1

N

∑
x∈S−

x⊗m .

4: Define f : Sd−1 → R as f(u) := T̂ · u⊗m and apply the following standard gradient descent
steps. Let T = (d/α)c

′
for a sufficiently large constant c′ depending on c.

1. Initialize a random u0 ∼u Sd−1. If f(u0) < ζ, then reinitialize. If reinitialized T times,
then output failure.

2. Repeat the following for at most T many iterations. For the t-th iteration, calculate the
gradient g = proju⊥

t
∇f(ut), and update ut+1 = ut+λg

∥ut+λg∥2
where the stepsize λ =

c′′min(1, 1/ ∥proju∇f(ut)∥2) and c′′ is a sufficiently small universal constant. Repeat
this step until getting a unit vector ut that is a (α, η)-approximate solution such that
η+α2/dc

α′−α2/dc
≥ c′′α, then output such ut. If the condition is not satisfied in T many iterations,

then output failure.
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Proof [Proof of Lemma 36] Let u ∈ Sd−1 and W = V ⊥. To simplify the notation, we write
ūV = uV / ∥uV ∥2, ūW = uW / ∥uW ∥2 and u = sūV + tūW , where s, t ≥ 0 and s2 + t2 = 1. The
gradient of f at u is

∇f(u) = m

(
E

x∼D+
[(uV · xV )

m−1xV ]− E
x∼D−

[(uV · xV )
m−1xV ]

)
= msm−1

(
E

x∼D+
[(ūV · xV )m−1xV ]− E

x∼D−
[(ūV · xV )m−1xV ]

)
.

Consider ũ = tūV − sūW ∈ Sd−1 ∩ u⊥, we have

∇f(u) · ũ = mtsm−1

(
E

x∼D+
[(ūV · xV )

m−1xV ]− E
x∼D−

[(ūV · xV )
m−1xV ]

)
· ūV

= mtsm−1

(
E

x∼D+
[(ūV · xV )

m]− E
x∼D−

[(ūV · xV )
m]

)
=

tm

s
sm
(

E
x∼D+

(ūV · xV )
m − E

x∼D−
(ūV · xV )

m

)
=

tm

s

(
E

x∼D+
[(uV · xV )

m]− E
x∼D−

[(uV · xV )
m]

)
=

tm

s
f(u)

If u∗ is an (α, η)-approximate solution, then

t ≤
∣∣∣∣ ηs

mf(u)

∣∣∣∣ ≤ η

mα
.

Thus, we have ∥u∗
W ∥2 ≤ η/(mα).

However, since V is unknown to us and we only have sample access to the distribution D,
we cannot hope to know the exact function f , which requires exact moment information of the
distribution over V . To overcome these problems, we first show that if we replace T with its
empirical estimation of the moments, the statement of Lemma 36 still holds.

Lemma 37 Let α, η, ξ > 0, m ∈ Z+ and D be a joint distribution of (x, y) on Bd(1)×{±1} that is
consistent with an instance of learning intersections of two halfspaces under factorizable distribution
with γ-margin assumption. Suppose D does not satisfy (ξ,m)-moment matching condition. Let
f̂(u) = u⊗m · T̂ where ∥T̂ − T∥F ≤ ϵ and T = Ex∼D+ [x⊗m

V ]−Ex∼D− [x⊗m
V ]. Then any u∗ that

is an (α, η)-approximate solution to maxu∈Sd−1 f̂(u) must satisfy ∥u∗
W ∥ ≤

(η+ϵ)
m(α−ϵ) .

Proof [Proof of Lemma 37] Let u ∈ Sd−1 and W = V ⊥. To simplify the notation, we write
ūV = uV / ∥uV ∥, ūW = uW / ∥uW ∥ and u = sūV + tūW , where s, t ≥ 0 and s2 + t2 = 1. We
compute the gradient of f̂ at u. Notice that f̂(u) = T̂ · u⊗m and

∇f̂(u) = ∇f(x) +∇(T̂ − T ∗ · u⊗m) .
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Therefore,

∇f̂(u) · ũ =∇f(u) · ũ+∇(T̂ − T ∗ · u⊗m) · ũ

=
tm

s
f(u) +∇(T̂ − T ∗ · u⊗m) · ũ

=
tm

s
f̂(u) +

(
tm

s
f(u)− tm

s
f̂(u)

)
+∇(T̂ − T ∗ · u⊗m) · ũ

=
tm

s
f̂(u) +

tm

s
(T̂ − T ) · u⊗m +∇(T̂ − T ∗ · u⊗m) · ũ

=
tm

s
f̂(u) +

tm

s
(T̂ − T ) · u⊗m + (T̂ − T ∗) · u⊗m−1 ⊗ ũ .

Since
∥∥∥T̂ − T ∗

∥∥∥
F
≤ ϵ, if u is an (α, η)-approximate solution, we have η ≥

∣∣∣∇f̂(u) · ũ∣∣∣ ≥
tm
s (α− ϵ)− ϵ, which implies t ≤

∣∣∣ (η+ϵ)s
m(α−ϵ)

∣∣∣ ≤ (η+ϵ)
m(α−ϵ) . Thus, we have ∥u∗

W ∥2 ≤
(η+ϵ)

m(α−ϵ) .

However, since V is unknown to us, even if we have i.i.d. sample access to D, it is still unclear
how to estimate T with samples. To overcome this difficulty, we show in the next lemma that if D
satisfies (ϵ, t)-moment matching condition for t ≤ m− 1, then we can efficiently estimate T up to a
desired accuracy.

Lemma 38 Let D over Bd(1) × {±1} be a distribution that is consistent with an instance of
learning intersections of two halfspaces under product distribution. Consider degree m-moment
tensors over Rd, T ∗ = Ex∼D+

X
x⊗m
V − Ex∼D−

X
x⊗m
V and T̂ = 1

n

∑
x∈S+

x⊗m − 1
n

∑
x∈S−

x⊗m,
where n = poly(dm, 1/ϵ, log(1/δ)). If for i < m, D satisfies the (ϵ/2m, i)−moment matching
condition, then with probability at least 1− δ,

∥∥∥T̂ − T ∗
∥∥∥ ≤ 2ϵ.

46



LEARNING INTERSECTIONS OF HALFSPACES UNDER FACTORIZABLE DISTRIBUTIONS

Proof [Proof of Lemma 38] Denote by T := Ex∼D+
X
x⊗m−Ex∼D−

X
x⊗m =

(
Ex∼D+

X
−Ex∼D−

X

)
x⊗m.

∥T − T ∗∥F =

∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

)(
(xV + xW )⊗m − x⊗m

V

)∥∥∥∥∥
F

=

∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

)(
(xV + xW )⊗m − x⊗m

V − x⊗m
W

)∥∥∥∥∥
F

=

∥∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

)
m∑
i=0

∑
σi

 m⊗
j=1

xσi(j)

− x⊗m
V − x⊗m

W

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

)
m−1∑
i=1

∑
σi

 m⊗
j=1

xσi(j)

∥∥∥∥∥∥
F

≤
m−1∑
i=1

∑
σi

∥∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

) m⊗
j=1

xσi(j)

∥∥∥∥∥∥
F

=
m−1∑
i=1

(
m

i

)∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

)(
x⊗i
V ⊗ x⊗m−i

W

)∥∥∥∥∥
F

=
m−1∑
i=1

(
m

i

)∥∥∥∥∥
(

E
x∼D+

X

(
x⊗i
V ⊗ x⊗m−i

W

)
− E

x∼D−
X

(
x⊗i
V ⊗ x⊗m−i

W

))∥∥∥∥∥
F

=

m−1∑
i=1

(
m

i

)∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

)(
x⊗i
V

)
⊗ Ex∼DX

x⊗m−i
W

∥∥∥∥∥
F

=

m−1∑
i=1

(
m

i

)∥∥∥∥∥
(

E
x∼D+

X

− E
x∼D−

X

)(
x⊗i
V

)∥∥∥∥∥
F

∥∥Ex∼DX
x⊗m−i
W

∥∥
F
≤ (ϵ/2m)

m−1∑
i=1

(
m

i

)
≤ ϵ.

The second equation holds by Ex∼D+
X
x⊗m
W = Ex∼D−

X
x⊗m
W = Ex∼DX

x⊗m
W . In the third equation,

we denote by σi : [m]→ {V,W} a map of combination such that |{j ∈ [m] : σi(j) = V }| = i. The
fifth equation holds because the tensor

(
Ex∼D+

X
−Ex∼D−

X

)(⊗m
j=1 xσi(j)

)
is symmetric according

to the map of combination σi. In the seventh equation, we use the fact that xV and xW are
independent. In the second last inequation, we use the fact that D satisfies the (ϵ, i)−moment
matching condition and ∥x∥ ≤ 1 for sure.

By Hoeffding’s inequality, we know that

Pr
(∥∥∥T̂ − T

∥∥∥
F
≥ ϵ
)
≤

dm∑
i=1

Pr
(∣∣∣Ti − T̂i

∣∣∣ ≥ d−m/2ϵ
)

≤ 2dm exp
(
−nd−mϵ2

)
≤ δ,

when n = poly(dm, 1/ϵ, log(1/δ)), where Ti is the i−th entry of the vectorized T . Thus, we have∥∥∥T̂ − T ∗
∥∥∥
F
≤
∥∥∥T̂ − T

∥∥∥
F
+ ∥T − T ∗∥F ≤ 2ϵ.
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D.2. Proof of Theorem 14

Given Lemma 37, we are now ready to analyze Algorithm 4 and prove Theorem 14. For convenience,
we restate Theorem 14 statement as Theorem 39.

Theorem 39 (restatement of Theorem 14) Let m ≤ 3, there is an algorithmA (Algorithm 4) such
that for any instance of learning intersections of two halfspaces under factorizable distributions,
if the distribution D does not satisfy the (α,m)-moment matching condition and D satisfies the
(α2d−c/2m, t)-moment matching condition for any t ≤ m − 1 and a sufficiently large universal
constant c, thenA draws poly(d, 1/α) i.i.d. samples from D, runs in time poly(d, 1/α), and outputs
a unit vector u ∈ Sd−1 such that ∥uW ∥ = O(α) with probability 2/3.

Proof [Proof of Theorem 14] By Lemma 38, the empirical estimation T̂ satisfies ∥T̂ −T∥F ≤ α2/dc

with high probability for a sufficiently large constant c. From Lemma 37, we have that for any
(α′, η)-approximate solution, ∥uW ∥ ≤ η+α2/dc

m(α′−α2/dc)
. Therefore, it suffices for us to show that after

at most T steps of the gradient descent, we will with high probability find a (α′, η)-approximate
solution such that η+α2/dc

α′−α2/dc
= O(α).

We start by showing that the initialization will with high probability give us a u0 such that
f(u0) = Ω(α/poly(d)). Since the empirical estimation T̂ satisfies ∥T̂ − T∥F ≤ α2/dc with
high probability, we must have ∥projV ⊗3(T̂ )∥F ≥ ∥projV ⊗3(T )∥F − ∥projV ⊗3(T̂ − T )∥F ≥
∥T∥F − ∥T̂ − T∥F = Ω(α). Given Fact 3 and T̂ is inside the subspace of V ⊗3 (isomorphic to
(R2)⊗3), we have that maxu∈Sd−1 u⊗m · T̂ = maxu∈Sd−1∧u∈V u⊗m · T̂ = Ω(α). We then use the
following fact, which is Lemma 12 from Vempala and Xiao (2011) to show that with high probability,
we will get an initialization with large f(u0).

Fact 8 Let p be a degree-m polynomial over d variables and K a convex body in Rd. If there exists
an x ∈ K such that |p(x)| > ϵ(c′d)m, for some suitable constant c′ > 0, then for l random points si,
Pr(∀si : |p(si)| ≤ ϵ) ≤ 2−l.

We apply Fact 8 with K = {u ∈ Rd | ∥u∥2 ≤ 1}. It is easy to see that if we sample the initialization
u0 uniformly from Sd−1 instead of K, f(u0) will be larger. Therefore, we have that with probability
at least Ω(1), Pru0∼Sd−1 u⊗m

0 · T̂ ≥ α/poly(d). Therefore in Step 1, with probability Ω(1), we
will have f(u0) ≥ α/dc

′
, where c′ is a universal constant.

Suppose we have such a good initialization, we start analyzing the gradient descent step in
Algorithm 4. To do this, we prove the following two facts. The first fact is about the smoothness of
the function f we are optimizing.

Fact 9 The function f in Algorithm 4 satisfies ∥∇f(u)−∇f(u′)∥ ≤ O(∥u− u′∥). i.e. f is a
Ω(1)-smooth function.

Proof Consider g : (Rd)m → R and h : Rd → Rd defined as g(u1, · · · ,um) = T · (u1 ⊗ · · · ,um)
and h(u) = u. Then we have f(u) = g(u1, · · · ,um), where each ui = g(u). Therefore,

∇f(u) = ∇g(u1, · · · ,um) =

m∑
i=1

∂ui

∂u

∂g

∂ui
=

m∑
i=1

I(Tu⊗m−1) = mT · u⊗m−1 ,

where ∂g
∂ui

= Tu⊗m−1 follows from that T is a symmetric tensor.
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Therefore, we get

∥∇f(u)−∇f(u′)∥2 =∥mT · (u⊗m−1 − u′⊗m−1)∥2

≤m∥T∥F
m∑
i=1

(
m

i

)
∥(u′ − u)⊗iu⊗m−i∥F

≤m∥T∥F
m∑
i=1

(
m

i

)
∥(u′ − u)∥i2∥u∥m−i

2

≤m∥T∥F
m∑
i=1

(
m

i

)
2m∥(u′ − u)∥2

≤m2mm∥T∥F 2m∥(u′ − u)∥2 = O(∥u′ − u∥2) ,

In the first inequality, we use the symmetry of u⊗i, i ∈ [m]. In the third inequality, we use the fact that
∥u′ − u∥ ≤ 2. And in the last inequality follows from m ≤ 3 and T = Ex∼D+ x⊗m−Ex∼D− x⊗m,
where D+ and D− are supported on Bd(1).

The next fact measures the progress made in each step during the optimization step.

Fact 10 Let f : Sd−1 → R be an L-smooth function. For u ∈ Sd−1, g = proju⊥∇f(u), and
u′ = u+λg

∥u+λg∥2
where the stepsize λ = cmin(1/L, 1/ ∥proju∇f(u)∥2 , 1) and c is a sufficiently

small constant, we have f(u′)− f(u) = Ω(λ∥g∥22).

Proof Let the angle between u and u′ be θ. Then, λ∥g∥2 = tan(θ) is at most a sufficiently small
constant. Notice that

f(u′)− f(u) ≥(u′ − u) · ∇f(u)− L∥u′ − u∥2

=λg · g + (∥u+ λg∥2 − 1)u′ · ∇f(u)− L(2 sin(θ/2))2

≥λ∥g∥22 + (∥u+ λg∥2 − 1)(projuu
′ · proju∇f(u) + proju⊥u′ · g)− Lλ2∥g∥22

=λ∥g∥22 + (1/ cos(θ)− 1)(cos(θ)∥proju∇f(u)∥2 − sin(θ)∥g∥2)− Lλ2∥g∥22
≥λ∥g∥22 +O(sin θ)2(cos(θ)∥proju∇f(u)∥2 − sin(θ)∥g∥2)− Lλ2∥g∥22
≥λ∥g∥22 +O(λ2∥g∥22)∥proju∇f(u)∥2 − sin(θ)2λ∥g∥22 − Lλ2∥g∥22
≥λ∥g∥22 +O(λ∥proju∇f(u)∥2)λ∥g∥22 −O(λ)∥g∥22 − (Lλ)λ∥g∥22
=Ω(λ∥g∥22) ,

Here, in the first inequality, we use Taylor expansion for f as well as the smoothness of f . In
the second inequality, we use the fact that λ ∥g∥ = tan θ. And in the last equality follows from
λ = cmin(1/L, 1/ ∥proju∇f(u)∥2 , 1).

Now we assume for the purpose of contradiction that the algorithm did not terminate in T
iterations, which implies that any ut is not an (α′, η)-approximate solution we desire for any
t ≤ T . From Fact 10, we have that f(ut) is monotone increaseing, therefore, we must have
f(ut) ≥ f(u0) ≥ α/dc−1 for any t. Since we know that any ut is not an (α′, η)-approximate
solution we desire. This implies that η+α2/dc

α/dc−1−α2/dc
= Ω(α), and therefore we must have η =
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∥proju⊥
t
∇f(ut)∥2 ≥ α2/dc. This implies that we must make some progress for each step of the

gradient descent. Accoriding to Fact 10, we must have that

f(ut+1)− f(ut) =Ω(min(1, 1/∥projut
∇f(ut)∥2)∥g∥22

=Ω(min(1, 1/∥projut
∇f(ut)∥2)α4/poly(d)

=Ω(min(1, 1/(mf(ut)))α
4/poly(d) = 1/poly(d/α) ,

where the second from the last inequality follows from we use the fact that projut
∇f(ut) · ut =

mf(ut). Therefore, after T iterations, we get f(uT ) ≥ Tα2/poly(d) + f(u0) ≥ Tα2/poly(d) =
ω(α). While for any u ∈ Sd−1, we should have f(u) = u⊗3 · T̂ ≤ ∥T̂∥F ≤ ∥T∥F +α2/poly(d) =
O(α). This gives a contradiction and therefore, we must find a (α′, η)-approximate solution such
that η+α2/dc

α′−α2/dc
= O(α) before T iterations. This completes the proof.

Appendix E. Omitted Proofs from Section 4

E.1. Proof of Lemma 15

In this section, we give the proof of Lemma 15. For convenience, we restate Lemma 15 below.

Lemma 40 (Restatement of Lemma 15) Let D be a joint distribution of (x, y) on Bd(1)× {±1}
that is consistent with an intersection of halfspaces with γ-margins and w ∈ Sd−1 such that
∥wV ∥2 ≤ cγ, for some small constant c, where V is the relevant subspace of the intersection of
halspaces. Then for any band Bt := {x ∈ Bd(1) | x · w ∈ [t, t + cγ]} where t ∈ R and c is a
sufficiently small constant, the distribution of (x, y) conditioned on x ∈ Bt is consistent with an
instance of learning a degree-2 polynomial threshold function with Ω(γ2)-margin.

Proof [Proof of Lemma 15] Let h∗(x) = sign(u∗ ·x+ t1)∧sign(v∗ ·x+ t2) be the target hypothesis
and V be the subspace spanned by u∗ and v∗ and w ∈ Sd−1 such that ∥wV ∥2 ≤ cγ. Notice that if
V is a one-dimensional subspace, then the statement trivially holds for every w. Therefore, without
loss of generality, we assume that V is a 2-dimensional subspace.

Without loss of generality, we assume that |t1|, |t2| ≤ 1. Let w∗ = wV / ∥wV ∥2. Given V is a
2-dimensional subspace, take w′ ∈ Sd−1 to be the unique direction that w′ ∈ V and w ·w′ = 0.
Notice that for any x ∈ Bt, we have

u∗ · x+ t1

=projw∗u∗ · x+ projw′u∗ · x+ t1

=sign(w∗ · u∗)∥projw∗u∗∥2w∗ · x+ projw′u∗ · x+ t1

=sign(w∗ · u∗)∥projw∗u∗∥2w · x+ sign(w∗ · u∗)∥projw∗u∗∥2(w∗ −w) · x
+ projw′u∗ · x+ t1 .

Notice that ∥wV ∥ ≤ cγ implies that ∥w∗ −w∥2 ≤ 2cγ. Thus, for the second term, we have

|sign(w∗ · u∗)∥projw∗u∗∥2(w∗ −w) · x| ≤ ∥projw∗u∗∥2∥w∗ −w∥2∥x∥ ≤ 2cγ.
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Since the distribution satisfies γ-margin condition, we get for any x ∈ Bt and on the support of D,

sign(u∗ · x+ t1) =sign (sign(w∗ · u∗)∥projw∗u∗∥2w · x+ projw′u∗ · x+ t1)

=sign (projw′u∗ · x+ (t1 + sign(w∗ · u∗)∥projw∗u∗∥2t))
=sign

(
sign(w′ · u∗)w′ · x+ (t1 + sign(w∗ · u∗)∥projw∗u∗∥2t)/∥projw′u∗∥2

)
.

Since ∥projw′u∗∥2 ≤ 1, we have for any x ∈ Bt satisfies

sign(u∗ · x+ t1) = sign(sign(w′ · u∗)w′ · x+ t′1)

with Ω(γ) margin, where t′1 = (t1 + sign(w∗ · u∗)∥projw∗u∗∥2t)/∥projw′u∗∥2. By symmetry, we
also have sign(v∗ · x+ t2) = sign(sign(w′ · v∗)w′ · x+ t′2).

Therefore, it suffices for us to show that there is a degree-2 PTF function with Ω(γ2) margin
that is consistent with the intersection of two halfspaces f ′(x) = sign(sign(w′ · u∗)w′ · x+ t′1) ∧
sign(sign(w′ ·v∗)w′ ·x+ t′2) with Ω(γ) margins. Without loss of generality, we can always assume
that |t′1| ≤ 1, |t′2| ≤ 1 and sign(w′ · u∗) ̸= sign(w′ · v∗). Because, otherwise, f ′(x) is equivalent to
either sign(sign(w′ · u∗)w′ · x+ t′1) or sign(sign(w′ · v∗)w′ · x+ t′2). Without loss of generality,
assume that sign(w′ · u∗) = 1 and sign(w′ · v∗) = −1. Furthermore, we can without loss of
generality assume that −t′1 ≤ t′2, because otherwise, f ′ is equivalent to the −1 constant function.
Given the above assumptions, we can without loss of generality assume that the function f ′ is
equivalent to

f(x) =


−1, for w′ · x ∈ (−∞,−t′1 − cγ]

1, for w′ · x ∈ [−t′1 + cγ, t′2 − cγ]

−1, for w′ · x ∈ [t′2 + cγ,∞] ,

where from the margin condition, for any x ∈ Bt and from the support of D we cannot have w′ ·x ∈
[−t′1−cγ,−t′1+cγ]∪[t′2−cγ,−t′1+cγ] and c is a sufficiently small constant. Therefore, simply take
the degree-2 PTF as as sign(p(x)), where p(x) = (sign(w′ ·u∗)w′ ·x+ t′1)(sign(w

′ ·v∗)w′ ·x+ t′2)
will immediately give us a function that is consistent with f ′ with cγ2 margins and c is a sufficiently
small constant. This completes the proof.

E.2. Proof of Theorem 16

In this section, we give the main weak learning algorithm as Algorithm 5 and present the proof of
Theorem 16. For convenience, we restate Theorem 16 below.

Theorem 41 There is an algorithm A such that for every instance of learning intersections of
two halfspaces with γ-margin assumption, given w ∈ Sd−1 such that ∥wW ∥2 ≤ cγ where c is a
sufficiently small constant, A draws poly(d, 1/γ) examples from D, runs in poly(d, 1/γ) time and
outputs a hypothesis h : Bd(1)→ {±1} such that with probability at least 2/3, err(h) ≤ 1/2−Ω(γ).

The algorithm in Theorem 41 is provided as Algorithm 5.
Proof [Proof of Theorem 41] From Chernoff bound, we have that the empirical estimation P̂ in
Line 4 has error at most c/|T | with failure probability at most c/|T |, where c is a sufficiently small
constant. Therefore, with at least constant probability, all estimations in Line 4 have error at most
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Algorithm 5 Weak Learning Intersection of Halfspaces under Product Distribution using a Relevant
Direction
Input: i.i.d. sample access to a distribution D on Bd(1) × {±1} that is an instance of learning
intersections of halfspaces under product distribution with γ margins and u ∈ Sd(1) such that
∥projV ⊥u∥2 ≤ cγ where c is a sufficiently small constant.
Output: With at least a constant probability, the algorithm outputs a hypothesis h such that
Pr(x,y)∼D[h(x) ̸= y] ≤ 1/2− Ω(γ).

1: Let discrete set T ⊆ [−1, 1] such that |T | ≤ 2/(c1γ) and for any t∗ ∈ [−1, 1], there exists a
t ∈ T such that |t− t∗| ≤ c1γ, where c1 is a sufficiently small constant depending on c.

2: for t ∈ T do
3: Let the localization area be defined as Bt = {x ∈ Bd(1) | x · u ∈ [t− c1γ, t+ c1γ]}.
4: Estimate Pr(x,y)∼D[x ∼ Bt] with P̂t := 1

n

∑
(x,y)∈S 1(x ∈ Bt) by drawing a set S of

poly(1/γ) from D.

5: if P̂t ≥ 1/(2|T |) then
6: Let Dt be the distribution of (V (x), y) ∼ D conditioned on x ∈ Bt where V : Rd →

R(d+1)2 defined as V (x) = [x, 1]⊗2 is the degree-2 Veronese mapping.
7: Use rejection sampling to get sample access to Dt and apply the standard perceptron to learn

a LTF with c2γ
2 margins to additive error 1/4 with success probability 1/2, where c2 is a

sufficiently small constant depending on c1, and let h′ : R(d+1)2 → {−1, 1} be the output
hypothesis.

8: Select the best c′ ∈ {−1, 1} and return the hypothesis h defined as

h(x) =

{
h′(V (x)), if x ∈ Bt ;

c′, otherwise,

and terminate.

c/|T |. Since we only need to show that the algorithm succeeds with a constant probability, we
assume that all estimations have error at most c/|T | and the algorithm in Line 4 succeeds for the rest
of the proof.

Notice that from the definition of T , we get Bd(1) ⊆
⋃

t∈T Bt. Therefore, there must be a
t ∈ T such that Pr(x,y)∼D[x ∈ Bt] ≥ 1/|T |. Thus, the “if” condition in Line 5 must be satisfied at
some point. Suppose that it is satisfied for Bt, then we must have Pr(x,y)∼D[x ∈ Bt] ≥ 1/(3|T |).
Furthermore, from Lemma 15, we must have that there is a degree-2 PTF that is consistent with
the distribution D′

t with Ω(γ2) margins, where D′
t is defined as the distribution of (x, y) ∼ D

conditioned on x ∈ Bt. Notice that such a polynomial p : Rd → {±1} can be written in the
form p(x) = sign(T · [x, 1]⊗2) for some ∥T∥f ≤ 1. Therefore, we must have that there is an LTF
h : (Rd+1)⊗2 → {±1} defined as h(x) = sign(T · x) that is consistent with the distribution Dt

with Ω(γ2) margins, where the constant where depends on c1. Then from the correctness of the
perceptron algorithm (see Cristianini (2000)), we must have that with at least constant probability
(when the perceptron algorithm succeeds), Pr(x,y)∼Dt

[h′(x) ̸= y] ≤ 1/4 . From the definition of
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Dt and D′
t, this also implies that

Pr
(x,y)∼D′

t

[h′(V (x)) ̸= y] ≤ 1/4 .

Therefore, with at least constant probability, the error of the output hypothesis is

Pr
(x,y)∼D

[h(x) ̸= y] = Pr
(x,y)∼D

[h′(V (x)) ̸= y ∧ x ∈ Bt] + Pr
(x,y)∼D

[c′ ̸= y ∧ x ̸∈ Bt]

≤1

4
Pr

(x,y)∼D
[x ∈ Bt] + Pr

(x,y)∼D
[c′ ̸= y ∧ x ̸∈ Bt] .

Since we are choosing the best constant c′ ∈ {−1, 1}, with at least constant probability, we have
Pr(x,y)∼D[c

′ ̸= y ∧ x ̸∈ Bt] ≤ 1
2 Pr(x,y)∼D[x ̸∈ Bt]. Combing with the fact that Pr(x,y)∼D[x ∈

Bt] ≥ 1/(3|T |) and |T | = O(1/γ), we get

Pr
(x,y)∼D

[h(x) ̸= y] ≤ 1/2− Ω(γ) .

This completes the proof.

Appendix F. Proof of Theorem 3

In this section, we present a detailed version of our main algorithm as Algorithm 6 and the full proof
of Algorithm 6.

Before presenting the proof of Theorem 3, it is convenient to recall the well known Adaboost
algorithm developed by Schapire and Freund (2013).

Theorem 42 (AdaBoost Schapire and Freund (2013)) Let H be a binary hypothesis class over a
space of example X . A learning algorithm A is said to be an α-weak learning algorithm for H if for
every distribution D over H such that there exists some h∗ ∈ H such that errD(h∗) = 0,A outputs in
T (A) time a hypothesis c : X → {±1} such that errD(c) ≤ 1/2−α by drawing i.i.d. examples from
D. If the hypothesis c output by A belongs to a hypothesis class C with VC-dimension d, then there
is an algorithm AdaBoost such that for every ϵ, δ and for every distribution D over H such that there
exists some h∗ ∈ H with errD(h

∗) = 0, it draws a set S of poly(d, 1/ϵ, 1/α, log(1/δ)) examples
from D, and outputs in poly(d, 1/ϵ, 1/α, log(1/δ), T (A)) time a hypothesis ĥ : X → {±1} with
errD(ĥ) ≤ ϵ with probability at least 1− δ, by running A, O(log(1/ϵ)/α2) times over distributions
over S.

Proof [Proof of Theorem 3] We first prove the correctness of Algorithm 6. Notice that if h∗ is ϵ-close
to any constant hypothesis, i.e. min{Prx∼D(h

∗(x) = +1),min{Prx∼D(h
∗(x) = −1)} ≤ ϵ/2,

then by Hoeffding’s inequality Vershynin (2018), with probability at least 1−O(δ), min{p̂, 1−p̂} < ϵ.
In this case, Algorithm 6 outputs a constant hypothesis with error ϵ/2 in poly(1/ϵ, log(1/δ)) time.
In the rest of the proof, we assume min{Prx∼D(h

∗(x) = −1)} > ϵ/2.
Since each x ∼ DX has ∥x∥ ≤ 1, we know that for z ∈ {±1} and k = {1, 2, 3}, the empirical

distribution D̂z, constructed with mz = poly(d, 1/γ, log(1/δ)) i.i.d. examples from Dz , satisfies∥∥Ex∼D̂z(x)−Ex∼Dz(x)
∥∥
F
≤ 1

100(γ/d)
10c Given this happens, we consider two cases for the

empirical distribution (D̂+, D̂−). In the first case, ∀t ∈ [3], (D̂+, D̂−) satisfies (αtγ
ct/poly(d), t)-

moment matching condition, where α1 = 1/64, α2 = 1/16, α3 = 1/2 and ct ≥ c. By Hoeffding’s
inequality, we know that D satisfies
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Algorithm 6 LEARNING INTERSECTIONS OF TWO HALFSPACES (Computationally efficient algo-
rithm for learning intersections of two halfspaces)

1: Input: ϵ, δ, γ ∈ (0, 1) and i.i.d. sample access to a distribution D on Bd(1) × {±1} that is
an instance of learning intersections of halfspaces under product distribution with γ-margin
assumption.

2: Output: With probability at least 1 − δ, the algorithm outputs a hypothesis ĥ : Rd → {±1},
such that err(ĥ) ≤ ϵ.

3: Draw m0 = O(1/ϵ, log(1/δ)) examples S0 := {(x(i), y(i))}m0
i=0 from D and estimate p̂ :=

1
m0
1(y(i) = 1). If p̂ < ϵ or p̂ > 1− ϵ, return a constant hypothesis accordingly.

4: For z ∈ {±}, draw mz = poly(d, γ, log(1/δ)) i.i.d. examples Sz := {x(i)}mz
i=0 from Dz via

rejection sampling.
5: For z ∈ {±}, let D̂z , the uniform distribution over Sz be the empirical distribution of Dz .
6: if ∀t ∈ [3], (D̂+, D̂−) satisfies (αtγ

ct , t)-moment matching condition, where α1 = 1/64, α2 =
1/16, α3 = 1/2, c1 = 4c, c2 = 2c, c3 = c. then

7: Run Algorithm 3 over D, poly(d, 1/γ, log(1/δ)) times and denote by O the union of the
outputs of running Algorithm 3.

8: else
9: Find the first t such that (D̂+, D̂−) does not satisfy (αtγ

ct/poly(d), t)-moment matching
condition.

10: Run Algorithm 4 with parameter t over D, O(log(1/δ)) times and denote by O the union of
the outputs of running Algorithm 4.

11: for w ∈ O do
12: Run Boosting algorithm to get a hypothesis hw using the weak learning algorithm used in

Section 4 using w as the input vector.
13: Draw poly(1/ϵ, log(d/(γδ))) i.i.d. examples from D and find the hypothesis ĥ from Ĥ = {hw |

w ∈ O} with smallest empirical error
14: return ĥ.

1. ∥(Ex∼D+ −Ex∼D−)x∥F ≤ γc.

2. ∥(Ex∼D+ −Ex∼D−)xx⊺∥F ≤ γc

3.
∥∥(Ex∼D+ −Ex∼D−)x⊗3

∥∥
F
≤ γc

By Theorem 13, we know that with probability at least Ω(γ/d), Algorithm 3, outputs a list of
d unit vectors w such that at least one of the w satisfies ∥wV ∥2 ≤ poly(γ). Thus, by running
Algorithm 3 poly(d, 1/γ, log(1/δ)) times, with probability at least 1 − O(δ), one of these imple-
mentations satisfies the above guarantee, which implies that we have a list of unit vectors O of size
poly(d, 1/γ, log(1/δ)) such that one of the unit vectors w satisfies ∥wV ∥2 ≤ poly(γ).

In the second case, there must be some t ∈ [3] such that (D̂+, D̂−) does not satisfy the
(αtγ

ct/poly(d), t)-moment matching condition. In this case, we consider the smallest t ∈ [3] that
satisfies the above condition. By the choice of αt, it is always holds that αt−1 ≤ 2−tαt. This implies
that D does not satisfy (αtγ

ct , t) moment matching condition but satisfies (αtγ
2ct/(2tpoly(d)), t′)-

moment matching condition, for every t′ ≤ t. Since (γct) = γΩ(c), by Theorem 14, with probability
Ω(1), Algorithm 4 outputs a vector w such that ∥wV ∥2 ≤ poly(γ). Thus, by running Algorithm 4,
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(log(1/δ)) times, we obtain a list of O(log(1/δ)) unit vectors such that at least one of the w satisfies
∥wV ∥2 ≤ poly(γ).

By Theorem 16, we know that provided a unit vector w such that ∥wV ∥2 ≤ poly(γ), Algorithm 5
is a Ω(γ)-weak learner. And the hypothesis output by Algorithm 5 is a polynomial threshold
function restricted at some band, which has a VC dimension O(d). Given this happens, Theorem 42
implies Adaboost takes Algorithm 5 as a weak learner and outputs a hypothesis hw such that
err(hw) ≤ ϵ with probability at least 1 − O(δ). Since one of the w satisfies ∥wV ∥2 ≤ poly(γ)
and O has size at most poly(d, 1/γ, log(1/δ)), a standard hypothesis testing approach outputs some
ĥ ∈ {hw | w ∈ O} with err(ĥ) ≤ ϵ with probability at least 1 − O(δ). By union bound, with
probability at least 1− δ, Algorithm 6 outputs a hypothesis ĥ with err(ĥ) ≤ ϵ.

To conclude the proof of Theorem 3, we bound the sample complexity and the time complexity
of Algorithm 6. Given min{Prx∼D(h

∗(x) = −1)} > ϵ/2, sampling one example x ∼ Dz , for
z ∈ {±} has a sample complexity Õ(1/ϵ). Thus, constructing the empirical distribution (D̂+, D̂−)
takes poly(d, 1/γ, log(1/δ)) sample and time. On the other hand, by Theorem 13 and Theorem 14,
every time we run Algorithm 3 and Algorithm 4, it takes us poly(d, 1/γ, log(1/δ)) sample and
time. Since we run Algorithm 3 and Algorithm 4 at most poly(d, 1/γ, log(1/δ)) times, we know
that constructing O takes poly(d, 1/γ, log(1/δ)) sample and time. Finally, since O has size at most
poly(d, 1/γ, log(1/δ)), by Theorem 16 and Theorem 42, it takes poly(d, 1/γ, log(1/δ)) sample and
time to create {hw | w ∈ O}. Finally, as a hypothesis testing approach over {hw | w ∈ O} can be
done efficiently. We know that the sample complexity and time complexity of Algorithm 6 are both
poly(d, 1/γ, log(1/δ)).

Appendix G. CSQ Lower Bound on Learning Intersection of Margin Halfspaces
under Factorizable Distributions

We give our main theorem for CSQ hardness as the following.

Theorem 43 Let γ > 0, q ∈ N, τ ∈ (0, 1) and d′ = min(d, 1/γ2). Any CSQ algorithm that learns
intersections of two halfspaces on d-dimension with γ-margin under factorizable distributions to
error 1/2−max(d′−Ω(log(1/γ)), 2−d′Ω(1)

) requires q queries of tolerance at most τ , where q/τ2 ≥
min(d′Ω(log(1/γ)), 2d

′Ω(1)
).

The high-level proof idea here follows the framework of Non-Gaussian Component Analysis (see
Diakonikolas et al. (2017) and Diakonikolas et al. (2023)). To prove the CSQ hardness, it suffices
for us to prove a CSQ lower bound against an easier decision problem as defined in Definition 22.
For convenience, instead of considering distributions on Bd × {±1}, we will consider distributions
on Rd × {±1}. As we will later see, the difference here is trivial as we will be able to rescale
and truncate these distributions (for our construction) inside a ball at the cost of a very small total
variation distance. We show that given CSQ access to a joint distribution D of (x, y) supported on
Rd × {±1}, it is hard to solve the problem B(D, D) with the following distributions.

(a) Null hypothesis: We have x ∼ N (0, Id) and y = 1 with probability 1/2 independent of x.

(b) Alternative hypothesis: D ∈ D, where D is a family of distributions such that for any distribution
D ∈ D, D is close in total variation distance to a distribution D′ that is an instance of learning
intersections of two halfspaces with γ-margin under factorizable distributions.
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To construct the family of distribution D, we first construct a distribution D of (x′, y) sup-
ported on B2(1) × {±1} that is consistent with an intersection of halfspaces with γ margin and
E(x,y)∼D[yp(x)] = 0 for any polynomial p of degree at most O(log(1/γ)). Being supported inside
the ball here will be convenient for later truncation. We give the following lemma for distribution D
where the extra third property here is needed for technical reasons.

Lemma 44 Let γ > 0, then there exists a joint distribution D of (x, y) supported on B2(1)×{±1}
that satisfied the following conditions:

1. (Realizable by an intersection of two halfspaces with γ margins) There exists an intersection
of two halfspace h∗ such that D is realizable by h∗ with γ margins;

2. (Orthogonal with low-degree polynomial) For any polynomial p : R → R of degree at
most c log(1/γ) where c is a sufficiently small constant and Ex∼N2 [p(x)] = 0, we have
E(x,y)∼D[yp(x)] = 0;

3. (Bounded chi-squared distance with Gaussian) χ2(D+,N2), χ
2(D−,N2) = O(1/γ).

Proof To construct such a distribution D, we first construct a distribution D′ supported on {±1}n ×
{±1}. Then we obtain D by projecting D′ onto a 2-dimensional subspace and add N (0, σI2) noise
on x where σ = Θ(γ). The purpose of the extra noise is to make the originally discrete distribution
continuous so we can have bounded χ-squared distance. We introduce the following fact about such
a D′ from Sherstov (2009).

Fact 11 Let n ∈ N, then there exists a joint distribution D of (x, y) supported on {±1}n × {±1}
that satisfies the following conditions.

1. (Realizable by an intersection of two halfspaces) There exists an intersection of two halfspace
c such that D is realizable by c where the weight is the halfspaces is 2O(

√
n).

2. (Orthogonal with low-degree polynomial) For any polynomial p : R → R of degree at
most c

√
n where c is a sufficiently small constant and Ex∼u{±1}n [p(x)] = 0, we have

E(x,y)∼D[yp(x)] = 0.

Suppose ∥w1∥2, ∥w2∥2 ≤ 2c1
√
n in Item 1 of Fact 11. Then we set n = log(1/γ)2/(100c1)

2 in
Fact 11, and let D′, w1 and w2 be the corresponding distribution and weight for the intersection
of halfspaces. This implies that ∥w1∥2, ∥w2∥2 ≤ (1/γ)1/100. We then first define the distribution
D′′ as the distribution of

(
1

2(1/γ)1/100
[x · b1,x · b2]

⊺, y
)

, where we sample (x, y) ∼ D′ and b1

and b2 are orthornomal basis vectors that spans the subspace spaned by w1 and w2. Then we
defined a independent noise random vector z ∈ R2, sampled by having z ∼ N2(0, γI2/100) and
then conditioned on ∥z∥2 ≤ γ. Finally, we define the desired distribution D as the distribution of
(x+ z, y) where (x, y) ∼ D′′ and z as defined above.

Notice that D′′ has at least 10γ margins for an intersection of halfspaces, which follows from D′

has Ω(1) margins (given γ is sufficiently small). Then the extra noise z has ∥z∥2 ≤ γ, therefore, D
still have γ margin for an intersection of halfspaces. Furthermore, D is supported inside B2(1)×{±1},
which follows from ∥w1∥2, ∥w2∥2 ≤ (1/γ)1/100 and ∥z∥2 ≤ γ. This proves Item 1 of Lemma 44.
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For Item 2 of Lemma 44, notice that E(x,y)∼D′′ [yp(x)] = 0 for any p of degree-c
√
n (for c a

sufficiently small constant) since D′′ is transform from D′ through a linear transformation. Then
Item 2 of Lemma 44 follows from that z are sampled independently in D.

For Item 3 of Lemma 44, notice that due to the extra noise z smoothed out the discrete distribution
D′′,

χ2(D+,N2) = E
x∼D+

[PD+(x)/PN2(x)]

= E
x∼D+

[∫
x′∈R2

Pz(x− x′)PD′′+(x′)dx′/PN2(x)

]
=O(1/γ) ,

where the last inequality follows from that Pz is bounded everywhere by O(1/γ) and the fact that
D+ is supported inside B2(1). The exact same argument holds for χ2(D−,N2).

To construct the family of distribution D from the 2-dimensional distribution in Lemma 44, we
will pick a large set of near orthogonal 2-dimensional subspaces. For each subspace V ∈ R2×d in
the set, we embed the distribution D supported on B2(1)× {±1} along this subspace. Namely, the
distribution we create is defined as the following.

Definition 45 (Hidden-Subspace Distribution) For a distribution A supported on Rm and a ma-
trix V ∈ Rn×m with V ⊺V = Im, we define the distribution PA

V supported on Rn such that it is
distributed according to A in the subspace span(v1, . . . ,vm) and is an independent standard Gaus-
sian in the orthogonal directions, where v1, . . . ,vm denote the column vectors of V . In particular, if
A is a continuous distribution with probability density function A(y), then PA

V is the distribution
over Rn with probability density function

PA
V (x) = A(v1 · x, . . . ,vm · x) exp(−∥x− V V ⊺x∥22/2)/(2π)(n−m)/2 .

Furthermore, for a distribution A of (x′, y′) supported on Rm×{±1}, we define the distribution
PA
V of (x, y) as the distribution supported on Rn × {±1} that satisfies the following.

1. y and y′ has the same marginal distribution; and

2.
(
PA
V

)− is P (A−)
V and

(
PA
V

)+ is P (A+)
V .

That is, PA
V over Rn × {±1} is the product distribution whose orthogonal projection onto the

subspace of V and the label space {±1} is A, and onto the subspace in Rn perpendicular to V is the
standard (n−m)-dimensional normal distribution. For our setting, we will consider the special case
of m = 2. We will use the subspaces V ∈ S where S is exponential in size. We give the following
lemma for constructing S.

Fact 12 (Near-orthogonal Subspaces: Lemma 2.5 from Diakonikolas et al. (2021)) Let 0 < a, c <
1/2 and m,n ∈ Z+ such that m ≤ na. There exists a set S of 2Ω(nc) matrices in Rm×n

such that every U ∈ S satisfies UU⊺ = Im and every pair U, V ∈ S with U ̸= V satisfies
∥UV ⊺∥F ≤ O(n2c−1+2a).

Let S be the set in Fact 12. We let the alternative hypothesis distribution family be defined as
D = {PA

V |V ∈ S} where A is the distribution in Lemma 44. We give the following lemma for D.
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Lemma 46 For any sufficiently small γ > 0, there exists a distribution family D = {DV : V ∈ S}
supported on Rd × {±1} where |D| = 2d

Ω(1)
satisfying the following:

1. For any DV ∈ D, both (DV )
+ and (DV )

− are factorizable in V and V ⊥ and both (DV )
+
V ⊥ and

(DV )
−
V ⊥ are N (0, Id−2);

2. For any DV ∈ D, there exists a intersection of halfspaces that is consistent with DV with γ
margins. Furthermore, both halfspaces are in the subspace V ;

3. For any DV ∈ D, Pr(x,y)∼DV

[
proj⊥V (x) ≥ 2

√
d
]
= 2−dΩ(1)

; and

4. Let gV : Rd → R denote the function gV (x) = (Px∼D+
V
(x) − Px∼D−

V
(x))/PNd

(x). Then for

any DU , DV ∈ D, (gU · gV )Nd
= O(1/γ) if U = V and |(gU · gV )Nd

| = d−Ω(log 1/γ) if U ̸= V .

Proof Let S be the set in Fact 12. We let the alternative hypothesis distribution family be defined
as D = {PA

V | V ∈ S}, where A is the distribution in Lemma 44.
Item 1 follows immediately from the definition of D. Item 2 follows from Item 1 of Lemma 44.

Item 3 follows from the fact that A is bounded inside B2(1)×{±1} and the concentration of l2 norm
for Gaussian. Namely,

Pr
(x,y)∼Dv

[
x ≥ 2

√
d
]
≤ Pr

x∼N (0,Id−2)

[
x ≥ (2

√
d− 1)

]
= Pr

t∼χ2(d−2)
[t ≥ 3d] ≤ 2−Ω(d) ,

where χ2(d− 2) the chi-squared distribution with d− 2 degrees of freedom.
For Item 4, if U = V , then we have

(gU · gV )Nd
= E

x∼Nd

[gV (x)
2]

= E
x∼Nd

[((
Px∼D+

V
(x)− Px∼D−

V
(x)
)
/Nd(x)

)2]
= E

x∼Nd

[(
Px∼D+

V
(x)/Nd(x)

)2]
+ E

x∼Nd

[(
Px∼D−

V
(x)/Nd(x)

)2]
+ 2 E

x∼Nd

[(
Px∼D+

V
(x)/Nd(x)

)(
Px∼D−

V
(x)/Nd(x)

)]
≤χ2(D+

V ,Nd) + χ2(D+
V ,Nd) + 2

√
χ2(D+

V ,Nd)χ2(D+
V ,Nd) = O(1/γ) .

For the case U ̸= V , we will need the following fact.

Fact 13 (Correlation Lemma: Lemma 2.3 from Diakonikolas et al. (2021)) Let g : Rm 7→ R
and U, V ∈ Rm×d with m ≤ d be linear maps such that UU⊺ = V V ⊺ = I where I is the m×m
identity matrix. Then, we have that

E
x∼Nd

[g(Ux)g(V x)] ≤
∞∑
t=0

∥UV ⊺∥t2 E
x∼Nm

[(g[t](x))2] ,

where g[t] denote the degree-t Hermite part of g.
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Using the above fact and Item 2, we have

(gU · gV )Nd
= d−Ω(c log(1/γ)) E

x∼Nd

[gV (x)
2] = d−Ω(log(1/γ))O(1/γ) = d−Ω(log(1/γ)) .

This completes the proof.

Given Lemma 46, we are now ready to prove our main theorem Theorem 43.
Proof [Poof for Theorem 43] Without loss of generality, we will assume that min(d, 1/γ2) = d.
Since if this is not the case, i.e., d > 1/γ2, we can always give a lower bound for d′ = 1/γ2 and the
lower bound immediately applies to d > d′ by simply adding dummy coordinates that is always 0 on
the hard instance. Therefore, we just need to show a dΩ(log(1/γ)) lower bound given d ≤ 1/γ2.

Let D′ be the alternative hypothesis distribution set in Lemma 46 with the margin parameter in
Lemma 46 taken as α = 2γ

√
d. We defined null hypothesis distribution D′ as the joint distribution

of (x, y) where x ∼ Nd and y = 1 independently with probability 1/2. Now, consider the decision
problem B(D′, D′). From Lemma 46, we have CD(B, d−Ω(log(1/α)), O(1/α)) = 2d

Ω(1)
. Notice that

from Lemma 24, by taking the parameter γ′ in Lemma 24 as γ′ = d−c log(1/α) for some constant c, we
get that any CSQ algorithm for solving B(D′, D′) either requires a query of tolerance d−Ω(log(1/α))

or 2d
Ω(1)

many queries.
The problem here is that B(D′, D′

0) is supported on Rd × {±1} instead of Bd(1) × {±1}.
To fix this problem, we first truncate the distributions. We now define D′′ as the distribution of
(x, y) where (x, y) ∼ D′ | (∥x∥2 ≤ 2

√
d). Similarly, we defined D′′ as the family of distribution,

where for each distribution D′′
V ∈ D′′, we take a D′

V ∈ D′ and defined D′′
V as the distribution

of (x, y) where (x, y) ∼ D′
V | (∥proj⊥V x∥2 ≤ 2

√
d). Notice that from the definition of D′

and Property 3 of Lemma 46, the total variation distance between the truncated distribution and
the untruncated distribution is bounded by 2−dΩ(1)

. Therefore, given the CSQ lower bound on
the untruncated B(D′, D′), we have that any CSQ algorithm for solving the truncated B(D′′, D′′)

will either require a query of tolerance d−Ω(log(1/α)) + 2−dΩ(1)
= max(d−Ω(log(1/α)), 2−dΩ(1)

) =

max(d−Ω(log(1/γ)), 2−dΩ(1)
) or 2d

Ω(1)
many queries, which follows from the definition of the CSQ

oracle.
Now, since everything is bounded inside a radius 3

√
d ball, we just need to rescale it so everything

is inside a unit ball. From the definition of the CSQ oracle, this does not change the CSQ lower bound.
Defined D be the distribution of (x/(3

√
d), y) where x, y ∼ D′′ and D such that any DV ∈ D is

defined as (x/(3
√
d), y) where x, y ∼ D′′

V for some D′′
V ∈ D′′. It is immediate that any algorithm

that solves B(D, D) requires either a query of tolerance max(d−Ω(log(1/γ)), 2−dΩ(1)
) or 2d

Ω(1)
many

queries.
Furthermore, notice that any DV ∈ D is an instance of learning intersections of two halfspaces

with γ-margin under factorizable distributions. Therefore, any algorithm for learning intersections of
two halfspaces with γ-margin under factorizable distributions will output a hypothesis with ϵ error
if given such Di ∈ D. While given the null hypothesis distribution D, no learning algorithm can
learn any hypothesis with an error nontrivially better than 1/2. Therefore, given that such a learning
algorithm can solve B(D, D), it must require either a query of tolerance max(d−Ω(log(1/γ)), 2−dΩ(1)

)

or 2d
Ω(1)

many queries. This completes the proof.
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