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Abstract

We study the task of agnostically learning general (as opposed to homogeneous)
ReLUs under the Gaussian distribution with respect to the squared loss. In the
passive learning setting, recent work gave a computationally efficient algorithm that
uses poly(d, 1/¢) labeled examples and outputs a hypothesis with error O(opt) +e,
where opt is the squared loss of the best fit ReLU. Here we focus on the interactive
setting, where the learner has some form of query access to the labels of unlabeled
examples. Our main result is the first computationally efficient learner that uses
dpolylog(1/€) +O(min{1/p, 1/€}) black-box label queries, where p is the bias of
the target function, and achieves error O(opt) + €. We complement our algorithmic
result by showing that its query complexity bound is qualitatively near-optimal,
even ignoring computational constraints. Finally, we establish that query access
is essentially necessary to improve on the label complexity of passive learning.
Specifically, for pool-based active learning, any active learner requires Q(d/ €)
labels, unless it draws a super-polynomial number of unlabeled examples.

1 Introduction

ReL.U activations play a central role in the design of modern neural networks. A ReLU function
o(W - x —t) = max{W - x — t,0} is specified by a pair of parameters (W, t), where W € R% and
t € R. ReLU regression is the following basic problem: given some form of access to a distribution
D over R? x R, output a ReLU with loss that can compete with opt—the loss of the best-fit ReLU
with respect to D. This fundamental task has been extensively studied in the past decades; see,
e.g., [KKSK11, FCG20, DGK*20, VYS21, DKTZ22b, WZDD23, ATV22, GV24] and references
therein. Prior algorithmic work has focused on learning from random examples (passive learning)
and has obtained efficient learners with error O(opt) + €, under the assumption that the marginal
distribution D, is well-behaved; in most cases, a standard Gaussian or a structured distribution with
similar properties. Such a benchmark is motivated by known computational hardness results for
this problem. On the one hand, without any assumption on D, it is computationally intractable to
achieve error C - opt for any constant C' > 1 [DKMR22]. On the other hand, even under the standard
Gaussian, it is computationally hard to achieve loss opt + € [DKZ20, DKR23].

Despite the aforementioned long line of work on this problem, the number of labeled examples
needed to achieve the desired error guarantee remains poorly understood. For the special case that the
target ReLU has negative threshold (i.e., ¢ < 0) [DKTZ22a, WZDD23] design efficient PAC learning
algorithms achieving error O(opt) + € with a nearly optimal sample complexity of dpolylog(1/e).
The problem becomes much more challenging for general ReLUs (with arbitrary bias ¢) and in
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particular for ¢ > 0. Recently, [GV24, ZWDD25] gave the first efficient PAC learning algorithms
that achieve O(opt) + € error for general ¢, using poly(d, 1/¢€) labeled examples. In fact, to learn an
arbitrary ReLU to error €, even with clean labels, one needs O(d/¢) labeled examples in the passive
PAC setting (see, e.g., from Theorem 1.3). Hence, to obtain improved label complexity, one needs to
consider stronger data access models that allow some form of adaptive (query) access to the labels.

Learning with queries and (pool-based) active learning are powerful models that can be used to
reduce the number of labeled examples needed for various learning tasks. Such models capture
the ability to perform experiments, or the availability of expert advice, and are well-motivated by
real-worlds applications where unlabeled examples are cheap. A long line of work has shown that
in such interactive settings one can significantly reduce the number of labeled examples needed for
learning in a variety of settings [BBZ07, DKMOS5, BL13, ABL17, YZ17, She21, DMRT24, DKM?24,
KMT24a, GTX 24, LT25].

The focus of this paper is on agnostic learning with black-box query access to the labels. Specifically,
for € R?, we can make a black-box query for its label y(z), where y(x) is generated adversarially.

In the context of ReLU regression, in the noiseless setting, the examples we are actually using are
those with non-zero labels. This implies that if we have one example with non-zero label, then we
only need to make O(d) queries in its neighborhood to collect d examples with non-zero labels. This
lead to an algorithm with label complexity of O(1/p 4+ d)—beating the label complexity of passive
learning. If p = Q(1), existing agnostic learning algorithms robustify the above ideas and nearly
match such a label complexity, even in the passive setting. However, if p is small (corresponding to
large ¢t > 0) our understanding of the label complexity is limited. Specifically, there is a large gap
in the label complexity of known algorithms for ¢ > 0 versus ¢ < 0. This discussion motivates the
following question:

What is the label complexity of the general agnostic ReLU regression problem?

Our main result is the first efficient learning algorithm that solves the general agnostic ReLLU
regression problem with near-optimal label complexity (see Theorem 3.1 for the formal statement).

Theorem 1.1. Consider the problem of general agnostic ReLU regression with Gaussian marginals.
There is an algorithm that makes M = dpolylog(R?/€) + O(min{1/p, R?/e}) queries, runs in
poly(M) time, and outputs a ReLU function h = o(W - x — t) such that with high probability, h has
error O(opt) + €. Here, p is the fraction of examples that are labeled non-zero by the optimal ReLU
and R is the upper bound for |W*||.

Notably, our algorithmic approach solves not only the ReLU regression problem, but also develops
new techniques that can be used to analyze a variety of generalized linear models.

Unlike pool-based active learning, where an algorithm first selects a pool of unlabeled examples .S
from the marginal distribution D, and is allowed to query y(z) for € S, our algorithm makes use
of a stronger oracle that is allowed to query any desired point in R?.

To complement our upper bound, we show that the query complexity of our algorithm is information-
theoretically nearly optimal (see Theorem 4.1 for the formal statement).

Theorem 1.2. Consider the problem of general agnostic ReLU regression with Gaussian marginals.
Suppose that the optimal ReLU has bias p and ||W*|| = 1. Any learning algorithm that learns
a hypothesis h with error O(p) and succeeds with probability 1/3 must make Q(1/p'~°() 4 d)
queries, even if opt < p.

Our final lower bound shows that unless the unlabeled dataset is extremely large, no pool-based active
learning algorithm is able to achieve the label complexity of our algorithm, even in the realizable
setting. This establishes a sharp separation between pool-based active regression and query learning,
and resolves the label complexity of ReLU regression (see Theorem 4.2 for the formal statement) .

Theorem 1.3. Consider the problem of general (realizable) ReLU regression with Gaussian marginal.
Suppose the optimal ReLU has bias p. Any pool-based active learning algorithm that learns a
hypothesis h with error O(p) from a pool of m unlabled examples drawn from N (0, I) and succeeds
with probability 1/3 must make Q(d/(plog(m))) queries.

Preliminaries and Notation Here we record the problem definition and basic notation.



Definition 1.4 (Agnostic ReLU Regression with Queries). Let o(z) = max{z,0} be the ReLU
function. A labeling function y(z) : R® — R is a random function that maps each x € R?
to an unknown real-valued random variable. For each h : RY — R, denote by err(h) =
E,n(o,r) (M(z) — y(x))* /2, opt = miny.jw|<gr,>o0 err(c(W - x —t)) and o*(v) = o(W* -
x — t*) be any ReLU with error opt. A query takes x € R as an input and returns a label y ~ y(x).
We say that a learning algorithm A is a constant-factor approximate learner if for every labeling
function y(z), and for every €,6 € (0,1), it outputs some hypothesis h : R% — R by adaptively

making queries, such that with probability at least 1 — 6, err(h) < O(opt) + €. The query complexity
of A is the total number of queries it uses during the learning process.

Furthermore, we will without loss of generality assume opt < ¢, since the final error guarantee is
O(opt + €). We remark that in some parts of the paper, we will also consider the case where o is not
a ReLU but a general function and W* € S~ In that case, we call the problem agnostic learning
(spherical) generalized linear model (GLM) and for a hypothesis o(w - x), we use err(w) to denote
its error accordingly. For a vector W in R, we use || W || to denote it £ norm and use the lower case
w to denote its direction W/ ||V ||. For a one-dimensional standard normal z ~ N (0,1) and ¢t > 0,
we denote by ®(t) := Pr,(z > t) and ¢ (t) the value of the density function of z at ¢. For a ReLU
activation o (z — t), we denote by V (t) := E, _n(0,1) 02(z — t) its second moment and call p = ®(t)
its bias. For a real-valued function f : R — R, we denote by Hf||§ :=E.n(0,1) f?(2) its squared
L norm in Gaussian space and for a € [0, 1], denote by T, f(2) := Esun(0,1) f(az + V1 —a?s).

Organization of the Paper In Section 2, we consider a special case of the problem where ¢* is
given and the optimal vector W* is restricted over S¢~!. We propose a framework showing that
a simple projected gradient-descent method converges to a desired solution for learning spherical
GLMs, provided a warm-start. As an application, we give an efficient algorithm with optimal query
complexity for ReLU regression when ||[TW*|| , t* are given. In Section 3, we tackle the general ReLU
regression problem, by discussing the technical difficulties and presenting key components of the
problem, combining with the framework of Section 2. In Section 4, we establish our query complexity
lower bounds. Due to space limitations, we defer several proofs to the supplementary material.

2  Warm Up: Robustly Learning Spherical GLM

As a warm up, we consider the special setting where ||W*|| = 1 and t* > 0 are known. Prior
works in the passive setting, such as [GV24, ZWDD25], reduce the problem to this case by guessing
(J[W*]|,£*) in a brute force way. There are two motivations for studying such a setting. First, as
we will discuss in Section 3, although such a special case does not capture the main difficulty of
obtaining query-optimal algorithms, it provides important technical components to achieve this goal.
Second, when (||WW*||,¢*) are known, the problem becomes a special case of agnostic learning of
spherical GLMs, where o is a general activation function and is known precisely to the learner. In this
section, we start by analyzing the task of agnostic learning spherical GLMs in the passive learning
setting. We presenting several technical tools that we develop to solve the ReLU regression problem
in this special case with an optimal query complexity. Unlike prior works, such as [GV24], which
designed a complicated update rule for w (the current direction), we instead focus on the following
simple projected gradient descent method:

W ¢ projga—1 (w — pproj,,. Vyerr(w)). (1)
We summarize our main technical contribution in this section informally as follows.

Theorem 2.1. Let o : R — R be any activation function such that ||0’H§ =L, L >0. Let D be any
distribution over R? x R such that D, = N (0, 1) and err(w*) < ¢, where w* € S~ is a direction
that achieves the optimal loss. For o > 1, suppose we are given any unit vector w® € S*~1 such

2 ) .
that HTma’H2 > HO'/Hg /o, where 0y = 0(w, w*). Starting from w°, the update rule (1) gives
a direction W with error O(a’e).

Roughly speaking, we show that the update rule (1) has an initialization-dependent error guarantee,
which holds for even very complicated activation functions that are non-monotone. The quality of

the initialization is measured by the ratio « := ||o’ ||§ /|IT N Hz As we will show later, for

general ReLU activations, we are able to efficiently get a w® with & = O(1), which implies a solution



with error O(e) if we can implement (1) with high accuracy. Due to space limitations, we defer the
technical details and proofs of this section to Appendix B. To analyze the error guarantee, we start
with the following simple observation:

err(w) < };3 (o(w-x) — o(w* - x))* + }E (o(w* - x) —y)* < 20pt + ];] (o(w-z) —o(w* - z))>.
So, the central part of the analysis relies on characterizing the noiseless error of a o(w - x), {(w) =
E,-n(o,n) (o(w-z) — o(w* - ))? /2. Prior works usually analyzed ¢(w) via the angle 6(w, w*).
For example, for the problem of learning homogeneous halfspaces, ¢(w) = 6/m. However, in general,
£(w) does not have such a simple closed-form. In the following lemma, we give an integral expression
for £(w) over the unit sphere by drawing a connection with the Ornstein—Uhlenbeck semi-group.

Lemma 2.2 (Noiseless Error Estimation over the Sphere). Let o : R — R be any activation function
such that o' € La(N(0,1)) and let w € S~ be any unit vector such that 0 = 0(w,w*) < 7/2.
Then ((w) = fg sin s HT\/@J’HE ds < (n/2)sin? 6 o’ ||5 .

To relate Lemma 2.2 with the update rule (1), we use the following two structural lemmas that
characterize the progress as well as the noise level during the update in each round.

Lemma 2.3. Let o : R — R be any activation function such that ' € Lo(N (0, 1)) and let w € S?~!
be any unit vector such that 0 = 0(w, w*) < 7/2, where err(o(w*)) = opt. Write w* = aw + bu,
where u € S u L w,a,b > 0,a? 4+ b% = 1, then, proj,, . Vo l(w) = —b HT\/EO'/H; U.

Lemma 2.4. Let o : R — R be any activation function such that o' € Ly(N(0,1)) and let w € S¢1
be any unit vector such that 6 = 0(w,w*) < m/2, where err(c(w*)) = opt < e. Then for any
veSTlandv L w, |proj,. (Vyerr(w) — Vi, l(w)) - v| < Vello'|,

The intuition here is that in each update round, if the length of the gradient b HT \/a»a’ H; is larger than

the noise level /e ||o’||,, then the projected gradient descent approach is able to improve the angle
between w and w*. We summarize this as Lemma 2.5.

Lemma 2.5 (Angle Contraction). Let w*,w® € S* 1 such that w* = aw® + bu, where u €
ST u L w®,a,b>0,a%+b> = 1. Let §; = 0(w®,w*). Let G € R be a random vector such
that with probability 1, G L w9, Let g be the mean of G and § € R®. Suppose there is some ¢ > 0
such that g - v > ¢b/10, ||g|| < ¢b,|lg — gl < be/40, then by setting p = ¢/20, the update rule

w1 = projga—r (W' + pg) satisfies sin(0;11/2) < /1 — (2—50)2 sin(6;/2).

However, the length of the signal sin 6 HT Veosd0 H , in general is not an increasing function of 0. 1If

6o is not small enough, the noise level could be too high to make the gradient point in the correct
direction, making it impossible to reach a desirable error guarantee. On the other hand, by Lemma 2.2,

if £(w) > Q(a?¢), then the noise level |proj,, . (Vyerr(w) — V,f(w)) - v| is at most sin O ||0’||§.
Since HT mo’ | is decreasing in 6, this implies that, as long as we have a good initialization, we
can make progress and reach a good solution. We summarize this property as Lemma 2.6.

Lemma 2.6. Let 0 : R — R be any activation function such that o' € Ly(N(0,1)). Let o > 1
and 0 < 0y < /2 such that ||T\/70"||2 > ||0’H§ Ja. Let w € S be any unit vector such

cos 0y
that 6 = 0(w,w*) < 0, where err(o(w*)) = opt < e. Ifsin® 0 ||0'/||§ > 20a’¢/m, then for any
veSTlandv L w, ||proj,. (Veerr(w) — Vo l(w))|| < ||proj,. Vo l(w)|| /20. Furthermore, if
lproj, . (Vuwerr(w) — Vi l(w))|| > ||proj,,. Vuwl(w)| /20, then err(w) < O(c?e).

2.1 Application: Query Complexity of Agnostic Learning Spherical ReLU with Known Bias

As a direct application of the above framework, we show when w* € S?~! and ¢* is given, how to
solve the general ReLU regression problem with an optimal query complexity. As discussed above,

to ensure we get a solution with error O(¢), we need some w® with ||O'/H§ / ||Tmo/||z =0(1).
To characterize such a 6, we present the following structural lemma.

Lemma 2.7. Let o be an activation function of the form o(z) = Relu(z — t*), where t* > 0. If
sin/2 < 1/t*, then || T 0" ||2 = Ilo"|I3 /50.



This implies that 6y = O(1/t*) is sufficient for us to reach some w with O(e) error. But to obtain
such a w(®) is also a challenging problem. Our initialization is motivated by the following lemma.

Lemma 2.8. Let o be an activation f the form o(z) = Relu(z — t*), where t* > 0. Let y(x) be any
labeling function such that opt < e. Let ¢ > 0 be a suitably small constant. If V (t*) > Ce, for some
large constant C, then Pr,..no,1) (J(7) # sign(w* - x — t*)) < ®(t*)/C" for some large constant
C' > 0, where j(x) := 1{y(z) > ¢/(t*)}.

That is to say, as long as ¢* is not too large to make h = 0 have error O(¢), the truncated label
g(x) := 1{y(x) > ¢/t*} can be seen as a labeling generated by the halfspace h(x) = sign(w*-z—t*)
corrupted with n-level adversarial label noise, such that n/®(¢*) < 1/C for some sufficiently large
constant C. Such an observation is useful, as it allows us to make use of the recent technique

developed in [DKM24] to obtain the warm-start using only O(1/p + d) queries.

Lemma 2.9. [Halfspace Initialization via Queries (Theorem 3.8, Theorem F.1 [DKM24])] Let
h*(x) = sign(w* -z —t*), where t* < O(/log(1/¢€)) and y(x) : R* — +1 be any labeling function
such that Pr,. .y 1y (h*(x) # y(x)) < ®(t*)/C" for some large enough constant C'. There is
an algorithm such that given some t € R with |t — t*| < 1/log(1/e), it makes M = O(1/®(t) +
dlog(1/€)) queries, runs in poly(d, M) time, and with probability at least 1/ log(1/®(t)), outputs
some w®) such that sin(A(w®,w*)/2) < min{1/t,1/2}.

However, obtaining such a w(®) is not enough for us to solve the problem with a small label complexity
for the following reason: Lemma 2.6 does not bound the number of iterations and the number of
labeled examples needed to reach a good solution. Specifically, by Lemma 2.5, the progress made in
each round is characterized by the length of the signal g - u. If g - u ~ c¢sin 0, then the angle decreases
by a factor of (1 — ¢) in each round. If t* = 0, prior works have shown that ¢ = Q(1) and O(d)
labeled examples are enough to get a good estimation of g. The landscape changes dramatically when
t* becomes large. As indicated by Lemma 2.3, for large ¢*, the length of the gradient is a most ||o” ||§,
which can be as small as poly(¢). This implies that, unless we estimate the gradient to very high
accuracy and rescale the gradient to a constant length, the progress made in each round is too small.
Unfortunately, as the variance of the gradient is much larger than the accuracy we need, this blows
up the total query complexity. To overcome this difficulty, we show that for the problem of ReLU
regression, the initialization guarantee 6y < O(1/t*) not only lets us make progress in each round,
but it also allows us to use queries to boost the length of the gradient while maintain a small variance.
Intuitively, every time we estimate the gradient, examples with w* - = > ¢* contribute most of the
gradient. When our current w(® is close to w*, the regions {z | w(® - 2 > t*} and {z | w* - & > t*}
have significant intersection. Thus, we can boost the length of the gradient by querying examples in
{z | w -z > t*}. Furthermore, due to the Lipschitz continuity of Relu, we can maintain small
variance for the gradient; and thus O(d) examples suffice for us to accurately estimate the gradient.

Lemma 2.10. Let o(z) = Relu(z — t*), with t* > 0. Let y(x) be any labeling function
such that opt < e. Let w € S9! be any vector such that sin(6/2) < 1/t*. Denote by
G* € R? the random vector (o(w - x — t*) — o(w* - & — t*)) proj,,.x and G the random vec-
tor (o(w - x —t*) — y(x)) proj,.z, where & ~ N (0, 1) |{z]w.z>¢+}. Then the following holds: (1)

EG* = b||T /0|3 u/®(t); (2) (EG* —EG) - v| < Ve o', /0(t*)" (3) If sin® 00 (t*) > e
then E(G - v)? < O(b?),Yv € S 1,

The structural results we obtained so far are almost all we need to get a query-optimal algorithm
for the spherical case. We refer the reader to Appendix B for the detailed proof. A remaining
caveat is that the initialization algorithm for halfspace learning used in [DKM24] only succeeds
with 1/log(1/¢) probability in the worst case. This implies that to succeed with a good probability,
we need to run the same algorithm poly log(1/¢) times, which will give us a list of poly log(1/¢)
candidate hypotheses. The usual way to find a desired hypothesis from the list is to check their
empirical errors via labeled examples. However, this approach will take £2(1/¢2) labeled examples,
blowing up the query complexity we have achieved so far. To avoid this, we design a new active
testing procedure that only takes poly log(1/¢) queries and selects a hypothesis with error O(¢€). Our
procedure not only works for selecting ReLLU activations, but also applies for much general settings.

Lemma 2.11 (Hypothesis Selection with Queries). Let D be a distribution over R? x R and let
D, be the marginal distribution of D,. There is an algorithm that, on input a list of hypotheses



hi, ..., hy such that for i € [k], h; : R? — R, E,p h?(x) exists, it makes poly(k) queries and
returns a hypothesis h such that err(h) < O(min;e ) E(z 4)~p(y — hi(x))?).

The intuition of our hypothesis selection algorithm is as follows. To simplify the intuition, we
assume ||h1 || = ||h2]|. For each pair (4, j), we would like to check whether ||y — h;[[, < |ly — hjl|,.
which is equivalent to checking the sign of the correlation E[y(h;(z) — h;(z))]. Naively, this can
be done by randomly querying « ~ D,; but since the variance of y(h;(z) — h;(x)) can be very
large, this can blow up the query complexity of the algorithm. Instead, we reweight D, according to
(hi(z) — hj(x))? and use §(x) x y/(h;(x) — hj(x))? as our query value. Such a modification keeps
the mean we are interested in, but reduces its variance, allowing us to use O(1) queries to solve the
task. We defer details of the hypothesis selection algorithm to Appendix B.9.

3 Agnostic Learning an Arbitrary ReLU with Optimal Query Complexity

To handle the general case, where ||W*|| and ¢* are unknown, we need to overcome several conceptual
and technical difficulties. Prior works in the passive setting solve the general version of the problem
by reducing it to the spherical case, by guessing ||W*|| and ¢* up to poly(e/R) additive error, running
the same algorithm poly(R/e€) times and doing a hypothesis testing. Unfortunately, this simple
approach is prohibitive in our context because it completely ruins the query complexity (even though
we are able to solve the spherical setting with optimal query complexity). To achieve an optimal
query complexity for the general problem, there are two main obstacles to overcome.

The first one is to find the correct way to update parameters. In the case where t* < 0, prior
works avoid guessing ||[W*|| by replacing the update rule (1) by a standard gradient descent W <+
W — pVwerr(W), and showing that when ||W — W*|| is large enough to make the noiseless error
larger than Q(e), Vyyerr(W)- (W —W*) > Q(||W — W*||*); this leads to a constant factor of decay
in ||WW — W*||. However, when there is a large threshold, ||V — WW*|| is not the correct quantity that
characterizes the noiseless error. Consider the optimal hypothesis h* = o(w* -  — ¢*) and two other
hypotheses hy = o(v -z —t*), ha = (t*¢ + 1)o(w* - © — t*), where £ > 0 and sin (v, w*) =~ &.
When t* is large, the parameter distance of hs is much larger than that of h;; however, it can be
checked that the two functions have the same noiseless error, and thus adding the same level of noise
can make the two functions indistinguishable. The implication of this phenomenon is that even if the
parameter distance || — W*|| is large, we are not able to guarantee the noise rate is small enough
to make the fast decay happen.

The second obstacle is how to implement the correct update with a small query complexity. In the
spherical setting, we make use of the fact that o/(w(®) - z — t*) — y(z) is small for most queries  to
make the variance of the gradient as small as sin? §; (which matches the length of the gradient). The
small variance is the key that makes O(d) queries sufficient to improve w(*). However, since r*, t*
are not part of the input, an inaccurate learned parameter ((), (")) could make h(x) — y(z) very
large, making it impossible to estimate the gradient accurately with few queries. So, when we do the
parameter update, the statistics we rely on must have small variance throughout the learning process.

We will require the following notation. For r > 0, w € S, t > 0, we define hypothesis h(r,w,t) =
o(rw - x — t). In particular, we write the optimal hypothesis as h* = o(r*w* - © — t*). We denote
by ¢ := t/r the normalized threshold of a ReLU and define the noiseless error of h(r,w,t) as
U(r,w,t) = L E,unqo,n (c(rw -z —t) — o(r*w* - — #*))? . Our main algorithmic result is an
efficient learning algorithm with an optimal query complexity. Due to space limitations, we defer
some technical details and proofs from this section to Appendix C.

Theorem 3.1. Consider the problem of agnostic general ReLU regression with queries under the
Gaussian distribution. There is an algorithm such that for every labeling function y(x) and for every
€, € (0,1), it makes M = Og(min{1/p, R?/e} + d - polylog(R?/€)) queries, runs in poly(d, M)
time, where p = ®(t*) is the bias of the optimal activation function, and outputs an h such that with

high probability at least 1 — 6, err(h) < O(opt) + e

We remark that the dependence on R? is due to the natural of rescaling of the error parameter.
Similar to the spherical setting, we still need a warm start in order to converge to a good solution.
To maintain a truncated label to implement Lemma 2.9, some information about (r*, *) is needed.
Here, we will grid » € [0, R] and ¢ € [0,0(y/log(R?/€))], the normalized threshold, to get the
initial information. However, instead of using a grid of size poly(R/¢), we maintain a grid of



size poly log(R/€), exponentially smaller than the grid-size used in all prior works. In particular,
for parameter ¢, we will set () = (i — 1)/polylog(R/e),i = 1,...,0(polylog(R/e)), while
for parameter r, we build a two-level non-uniform grid as follows. The first level of the grid is
defined as r; = 27 1e,i = 1,...,log(R?/e). For each interval [r;, r;11], we grid it uniformly into
rij =1 + (j — 1)r;/polylog(R/e€),j = 1,...,polylog(R/€). Such a grid can ensure that one of
the grid points (r, ¢) satisfies » < r* < 2r and |t — t*| < polylog(R/¢€). We show in Lemma 3.2
that such a pair (r, ) suffices for us to get an initial direction w(®) as a warm start.

Lemma 3.2 (Initialization with Raw Knowledge). Let h* = r*o(w*-x—t*) be the optimal hypothesis.
Assuming that (r*)2V (£*) > Q(e), there is an algorithm such that given parameters r,t > 0 with
r < r* < 2rand |t —t*| < 1/1og(R?/€), it makes M = O(1/p + dlog(R?/€)) queries, runs in
poly(d, M) time, and with probability at least 1/1log(1/p), outputs some w®) € S such that
sin(0(w®, w*)/2) < min{1/#*,1/2}.

Although the first-level grid r; is enough for us to get a warm start w(?), for technical reasons, to
obtain an algorithm with an optimal query complexity, it turns out that we need better knowledge
about r*. This is the reason why we use a two-level partition. In the rest of the proof, we assume that
we have (ro, w(?), to) such that |rg — r*| < 7*/polylog(R?/¢),sin(6/2) < 1/t* and |ty — t*| <
polylog(R?/¢). We next provide an overview of our algorithm based on this warm start (g, w(%), ¢().
As we mentioned earlier, since |W — W*|| is not the correct measure for the noiseless error, the
noise rate could be large even if ||IW — W*|| is large. To overcome this issue, in each round of the
algorithm, we modify the standard gradient descent by decomposing the update into two directions;
along direction w and orthogonal to w(?). In other words, we use different statistics to update
(7,t;) and w® separately in a careful way. The motivation for using such a strategy is due to the
following noiseless error decomposition, Lemma 3.3, which implies that the noiseless error can be
decomposed into two terms that are independent of each other. Importantly, as long as one of the two
terms is suboptimal, we are able to improve it despite the noise from the other direction.

Lemma 33. Let » > Ow € St > 0 Then {(r,w,t) <
(r*)? fOG sin s HTMU’(Z — t_*)Hz ds +E. . non) (o(rz —t) —o(r*z — t*))2 .

Furthermore, the errors from (7, ¢;), w® can be entangled with each other, which makes the analysis
subtle. In particular, the error from one term can make the statistics we use for updating the other
terms have a large variance, which could blow-up the query complexity we need. The second
motivation of such a strategy is that it provides a clean way to analyze the error entanglement between
the two terms. We list the algorithm below as Algorithm 1 and describe the update methods we use.
We defer the details of analysis to Appendix C.3.

Angle Update: Similar to the spherical setting, we construct the gradient by boosting
proj,,. Vyerr(w) via a rejection sampling approach. Given a ReLU activation, h(r;,w",t;),
define random vectors G} := (h(r;, w® t;)(z) — h*(z)) Proj(,(y. (z) and its noisy version
G = (h(rz-, w® t;)(z) — y(x)) Proj(y(yL (), where £ ~ N(0,1) |57, -

To begin with, we present the following lemma that quantifies G;.

Lemma 3.4. Let h(r;,w",t;). Write w* = aw™ + bu, where a,b > 0,a®> + b> = 1,
u € STV u L w9, Then the following holds: (1) If |t; —t*| < 1/log(R?/e) and b < 1/t
then EGr = —abr* | Tyo' (z — 6)||> u/®(E), where 1/2 < a < 2. (2) |[(EG* —EG) -v| <
Vello'(z =), /@), Yo € S v 1w,

Lemma 3.4 implies that the error from (r;,¢;) does not affect the direction of the update E G.
Combining Lemma 2.2 and Lemma 2.7, it follows that as long as 6; is large and contributes §2(¢) to
the noiseless error, the gradient G; we construct can improve the angle. However, this does not imply
that E G; can be estimated with only a few queries. To that end, we use the following lemma that
quantifies the variance of G;.

Lemma 3.5. Let h(r;,w"),t;) be a ReLU activation. Write w* = aw'” + bu, where a,b >
0,2 +0> =1, u € S u L w®. If|t; — | < 1/log(R?/¢), Ce/((r*)?®(t*)) < b* < 1/t2,
then E(G; - v)2 <O (EZNN(O,I) (o(riz —t;) — o(r*z — t*))? /O (&) + (r*)2b2) .

Unlike the spherical setting, the variance of G; depends on the accuracy of (r;,t;). In particular,
by Lemma 3.3, the contribution to the variance from (r;, ¢;) is proportional to its contribution to



Algorithm 1 QUERYLEARNING(Learn optimal ReLLU with a warm start)

1: Input: w® € S? ' : unit vector such that 6y < 1/polylog(R?/e). 79 > 0 : such that
|r* —ro| < r*/polylog(R?/e), to : |to — t*| < polylog(R?/e).
Output: / : R? — R, such that err(h) < O(e) with non-trivial probability.
By := 13 /polylog(R?/¢)
for:=0,..., 7 —1do ~

Generate polylog(R?/¢) samples zU) ~ N(0,1) | {w® - 2 > t;}. Query y(z)) and use
them to get an estimate §; for (EU;, E F;).

6:  if||g;|| > B;polylog(R?/e¢) then
7: Set (ri0, tio) = (ri,t;) and update (rij, ti;) = (rij—1), tij—1)) — (gi;)/polylog(R? /e)
until [|gi;(| < Bipolylog(R?/¢)
8: (ris1stiv1) < (rij, tij)
: forj=1,...,0(d) do
10: Generate z\9) ~ N(0,1) | {w*Y -z > t;,1} and query y(27))
11: Estimate E (G; via median of mean and get CAv‘l

12: wlth = Projga—1 (U)(z) — ,U,G'1>

13: Bi+1 = (1 - p)Bz

14: b = w™

15: Build a unit grid of size 1/polylog(R? /) over the ball centered at (r7, t7) and randomly select
a pair (7, 1) from the grid.

16: return h(7, 1, )

the noiseless error. When (7, ;) contributes more noiseless error than w(®, w(*) might be updated
incorrectly due to the estimation error.

To overcome this difficulty, we make use of a potential analysis by maintaining a suitably small upper
bound for (r*)? sin? 6; and reduce the upper bound in each round of our algorithm by considering the
update w1 = projga_: (w1 — ,uG’Z) for some suitably small u, where G is an estimation for
E G; with O(d) queries. We will show that as long as the error from (r;, ;) is within a polylog(R? /€)
factor of B2, dpolylog(R?/¢) queries are enough to estimate E G; and decrease the angle 6;. So, the
key to obatin the correct query complexity is to update (r;, t;) correctly, so that it introduces small
error throughout the implementation of Algorithm 1.

(r,t) Update We will next describe the way we update (r,¢). To begin with, we briefly explain
the technical difficulty that needs to be handled. To simplify the intuition, we consider a simple
one-dimensional setting where the optimal hypothesis is 7*c(z — t*), and we want to learn (r*,t*).
An immediate observation is that if we know £* to good high accuracy, then applying a binary search
over 7 via querying examples with z > t*, we can learn r* efficiently. However, learning ¢* with few
queries with an inaccurate learned parameter r is challenging, because even estimating the bias of
the target ReLU needs many samples. In halfspace learning, [DKM?24] overcomes the difficulty by
querying examples for which |z — | < B < 1. Such a method can zoom the error from (¢ — t*) and
(t — t*)/ B, which allows us to make a binary search to find ¢* with very few queries. Unfortunately,
this method is not robust to label noise in /5 loss. Intuitively, queries are more sensitive when the
labels are real-valued instead of binary. For the /5 loss, the noise rate could be very high within any
small region, making this approach fail.

To bypass this difficulty, for a given ReLU activation h(r;, w'*), t;), we consider the following two
quantities: U := (h(rs, w®, t;) — h*)(wD - z), Ff == —(h(r;,w?,t;) — h*), and their noisy
version U;, F;. Here we consider z ~ N(0,1) | {w® -z > #;}. Intuitively, if (r;, ;) are close
to (r*,t*), the task for optimizing them can be approximately seen as optimizing the following
quadratic function Z(r,t) := E, oy, ((rz —t) — (r*z — t*))?1(z > £*). Such a quantity nearly
characterizes the contribution of (r;, ¢;) to the noiseless error as well as the contribution of (r;, ;) to

the variance of the gradient we use for updating w”). Furthermore, if §; has already been updated in a
reasonable range, then (E U;, E F;) is very close to the gradient of Z(r;, ;). This gives the intuition
to estimate (E U;, E F;) and run a standard gradient descent update to improve (r;, t;). To formalize



this intuition, we need to overcome two technical challenges. First, unlike the angle update, where
the error from (r;, ¢;) does not affect the update direction E G, the mismatch of w(i), w* does affect
EU;,E F}, even if we ignore the noise and estimation error. This is because the mismatch between
w® and w* also contributes to U;, F;, which could vanish or even reverse the gradient for updating
(r4,t;). We defer the quantitative evaluation for the noise level and variance for U;, F; to Appendix C.
Fortunately, such forms of error are only O(r* sin 6;), which means that as long as w® is updated to
a reasonable range, we are safe to update (r;, t;). So, we will simultaneously maintain w® within
a reasonable region and only update (7, ¢;), when the angle is within a reasonable accuracy. The
second technique issue is because when the true threshold is large, Z(r,t) is an ill-conditioned
function. Due to the presence of noise, the ill-condition of Z(r,t) implies that even if w(”) has
already been updated to a desirable accuracy, the gradient descent update can only guarantee that
(rr,tr) is O(epolylog(R?/€)/®(t*)) close to (r*,t*) in terms of squared norm. Fortunately, there
are only two parameters we need to worry about and they are already very close to (*, t*); randomly
selecting a pair of parameters from their neighborhoods gives us a good hypothesis with enough
probability.

4 Label Complexity Lower Bounds And the Necessity of Using Queries

Here we present our label complexity lower bounds. We defer the detailed proofs in this section to
Appendix D. We start with an information-theoretic lower bound in the query setting.

Theorem 4.1 (Query Complexity Lower Bound). Consider the problem of agnostic ReLU regression
with queries with a restriction that the optimal ReLU satisfies ||W*|| < 1 and has bias at least p. Any

learning algorithm that outputs a hypothesis with error less than O(p/ log®(p)) with probability 1/3,
must make at least Q(1/p'=°+*M) + d) queries. Furthermore, this holds even if opt < 2-2d ")y,

The proof of Theorem 4.1 can be broken down into two parts. We first consider the lower bound of
Q(d). Such a lower bound even holds for an easier problem, which is the standard linear regression
problem in the realizable setting. Suppose that we have made r queries (!, ..., 2(") so far, and
denote by L the subspace spanned by them. Consider a Bayesian setting, where w* ~ S%~!. Suppose
we know w7, then for a new example x, by symmetry, no hypothesis will have better error than
the hypothesis wj - z. In particular, if  ~ N(0, I), this implies that no hypothesis has error better

than 1 — ||w} H; For any possible subspace L with dimension r, in expectation ||proj ,w* ||§ =r/d,
which implies that unless 2(d) queries are made, an algorithm must incur (1) error. On the other
hand, consider a hypothesis o(w* - © — t*) with bias p. We want to tell whether the hypothesis is 0
or not. Notice that in the realizable setting, if we make a query x and find y(x) = 0, then by making
another query in the opposite direction (but very far) we can easily verify whether h = 0. However,
with only a tiny fraction of adversarial label noise, we can corrupt all examples far from 0 to have
0 label. Now if w* ~ S, then only examples in a small cap with volume p'~°(!) have non-zero
label; thus, unless 1/ p'—°() queries are made, we are not able to solve the distinguishing problem.

Our next lower bound shows that no pool-based active learner can achieve the query complexity of
our query learner, even in the realizable setting.

Theorem 4.2 (Label Complexity Lower Bound, Active Learning). Consider the problem of realizable
pool-based active ReLU regression with a restriction that the optimal ReLU has bias p. Any active
learning algorithm A that makes less than O(d/(plog(m))) label queries over S, a set of m i.i.d.
points drawn from N (0, I), will with probability at least 2/3 output a hypothesis h with error Q(p).

While a number of prior works [Das04, HY 15, KMT24b, DKM?24] established query complexity
lower bounds for active classification problems, few techniques could be directly applied to the
regression setting. An immediate obstacle is that the behavior of an adaptive algorithm can be much
more complicated when the label is changed from binary to continuous. An observation, inspired
by prior works for proving label complexity lower bounds for learning halfspaces[Das04, DKM24],
is that given a pool of m unlabeled examples, learning a hypothesis with queries is not harder than
using queries to find d examples with non-zero labels. So we will focus on the hardness of this easier
problem. By Yao’s minimax principle, we consider a deterministic algorithm that solves the problem,
while w* ~ S%~1 for large enough d. Suppose that a deterministic algorithm wants to use r queries
to find k& examples with non-zero labels from a pool of /m unlabeled examples drawn from N (0, I).
Given a set of m unlabeled examples, and any fixed w*, the behavior of A can be uniquely described



as a path P = ((z!,y'),...,(2",y")) according to its responses. In particular, if the algorithm
successfully finds k£ examples with non-zero responses, then there exist k indices i1, . . ., i at which
the responses are ¥, ..., y"* > 0. Since there are (;) such tuples, to argue that the algorithm has
a large probability of failure, it suffices to argue that for a fixed tuple the probability of realization
is very small. Proving such a statement turns out to be challenging, due to the rich behavior of the
algorithm. In the binary classification setting, for each fixed tuple, the corresponding unlabeled
examples (x'1, ..., x'*) are unique, since y € {0, 1}. That s, to prove a lower bound for classification
problem, we only need to argue that the probability these k examples are all positive is small. Such a
strategy does not work for regression, as the next example not only depends on whether the previous
example is positive, but also depends on the full value of y. This results in many possible realizations
of ((z'1,y%),..., (2%, y%)). So we need to bound the integral of their density function over all
possible outcomes. Consider a realization of the event ((z1,y%), ..., (z%, y'*)), with % > 0.
Such a realization completely characterizes a vector wy, € L, where L is the subspace spanned by

these k queries. One observation is that if we change the basis of L by defining b; = x(il)/ ||x(“) ||

projLiilx(i‘i)

and b; = prOijilaj(ij)/ ‘ ‘, where L; _; = span{z(") ... (-1} thenwy can be

described as a k-dimensional vector v(wy,) := (wy, - by, ..., wy, - by). Importantly, the value of the
density function of the event is exactly the density of the event that the first & coordinates of a random
unit random vector equal to v(wy, ). On the other hand, due to the tree-structure of the algorithm, given
any possible v(wy,), we can decode it to reconstruct the corresponding ((x1,y), ..., (2%, y'™*)).
Denote by S,, the set of all possible v(wp,). This means the probability we are interested in is exactly
equal to the probability that proj, (w*) € S, where Ly is the span of the first & standard basis
vectors. To derive an upper bound for this probability, it is sufficient to find a superset of S,,. Our
observation is that if 271, ... z'* are orthogonal, then |lwy||* > k(t*)2, which also implies that
lv(wg)||* > k(t*)2. Furthermore, as long as m is not as large as 2%(4), for k chosen to be slightly
smaller than d, every k-tuple of examples from the pool are nearly orthogonal. This implies that the
norm of v(wy,) can be lower bounded uniformly, which suffices to bound above the target probability
by O(plog(1/p))*. Since there are at most () tuples we care about and k is slightly smaller than d,
a carefully chosen r concludes the proof.
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Supplementary Material

Structure of Supplementary Material The supplementary material is organized as follows. In
Appendix A, we record the notation and mathematical background required for our technical sections.
In Appendix B, we present omitted details from Section 2. In Appendix C, we provide a full version
of Section 3, including a detailed discussion on the update rule for w and (r, t), missing technical
lemmas and proofs, and the proof of Theorem 3.1. Finally, in Appendix D, we give the detailed
proofs of our lower bound results from Section 4.

A Preliminaries and Related Background

A.1 Problem Definitions and Notation

We first define the task of Agnostic Learning with queries and the corresponding task in the active
learning setting.

Definition A.1 (Agnostic ReLU Regression with Queries). Let o(z) = max{z,0} be the
ReLU function. A labeling function y(z) : R® — R is a random function that maps each
x € RY to an unknown real-valued random variable. For each h : RY — R, denote by
err(h) = Eyon(o,r) (A(x) — y(x))? /2, opt := minw.w<pszo err(c(W -z — 1)) and o* (z) =
o(W* -z — t*) be any ReLU with error opt. A query takes x € R? as an input and returns a
label y ~ y(x). We say that a learning algorithm A is a constant-factor approximate learner if for
every labeling function y(x), and for every €,6 € (0,1), it outputs some hypothesis h : R — R by
adaptively making queries, such that with probability at least 1 — 8, err(h) < O(opt) + €. The query
complexity of A is the total number of queries it uses during the learning process.

Definition A.2 (Pool-Based Active Learning for Agnostic ReLU Regression). Let o : R — R be a
known activation function and w* € S be a unit vector. Let D be a distribution over R? x {1}
such that D, the marginal distribution over z, is the standard Gaussian distribution N (0,I). For
each h : R — R, denote by err(h) = E(, ,yp (h(z) — y)> /2, opt := Miny, ||| < err(o(w - T))
and o*(x) = o(W* - & — t*) be any ReLU with error opt. Let S be a set of m i.i.d. labeled examples
drawn from D. An active learning algorithm (with label query access) is given S but with hidden
labels and is allowed to make a label query for each x € S and observe its label y(x). We say that
a learning algorithm A is a constant-factor approximate learner if for every distribution D and
for every e,6 € (0,1), it outputs some heH by adaptively making label queries over a set of m

examples drawn i.i.d. from D, such that with probability at least 1 — §, err(h) < O(opt) + €. The
label complexity of A is the total number label queries made over S during the learning process.

We will without loss of generality assume opt < ¢, since the final error guarantee is O(opt + €). We
remark that in some parts of the paper, we will also consider the case where o is not a ReLU but
a general function and W* € S?~!. In that case, we call the problem agnostic learning (spherical)
generalized linear model (GLM) and for a hypothesis o(w - x), we use err(w) to denote its error
accordingly. For a vector W in R%, we use ||WW|| to denote it £ norm and use the lower case w to
denote its direction W/ ||W||. For a one-dimensional standard random variable z ~ N (0, 1) and
t > 0, we denote by ®(t) := Pr,(z > t) and () the value of the density function of z at ¢. For a
ReLU activation o (z — t), we denote by V (t) := B _n(0,1) 0*(z — t) its second moment and call p
its bias. For a real valued function f : R — R, we denote by ||f||§ :=E, n(0,1) f?(2) its squared

L norm in Gaussian space and for a € [0, 1], denote by T, f(2) := Eg . n(0,1) f(az + V1 — a?s).

A.2 Background on Ornstein—Uhlenbeck Semigroup

Here we provide basic background on the Ornstein—Uhlenbeck Semigroup. We refer the readers to
[O’D14] for additional background.

Definition A.3 (Ornstein—Uhlenbeck Semigroup). Let p € (0,1). The Ornstein-Uhlenbeck semi-
group T, : Ly — Lo is a linear mapping that maps a function f to a function T, f defined as

T,f()= E fpz+/1-ps).

s~N(0,1)
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Definition A.4 (Ornstein—Uhlenbeck Operator). The Ornstein—-Uhlenbeck operator L : Ly — Lo is
a linear mapping that maps a function f to a function L f defined as

dT,
L4 = S | 2

We list several facts about the Ornstein—Uhlenbeck semigroup and Ornstein—Uhlenbeck operator.
Fact A.5 ([O’'D14]). Let f,g € La(N). The follows statements hold.

1. Forp €[0,1], Tpf||§ is a non-decreasing function with respect to p.

2
2. Fora,b € [0,1], Eceno,1) Taf (2) T f (2) = | Tympf (2|,
3. If f is a differentiable function, then for p € (0,1) (T, f(z)) = pT,f'(2).

dTp.f 1
4. el = 11T,

5 Eeonio) (F(R)LT,9(2) = Eonnion (F(2)(Thg(2)))

A.3 Background on Gaussian Integral

In this section, we provide background on Gaussian Integral. Let z ~ N (0, 1) be the standard normal
random variable. For ¢ > 0, we denote by ®(¢) := Pr,(z > t) and ¢ (¢) the value of the density
function of z at ¢. For a ReLU activation o (z — t), we denote by V (t) := E, _n(,1) 0°(z — t) its
second moment. We provide detailed characterization for ®(t), ¢ (t), V(¢). First, we provide the
following fact that characterizes ®(t).

Fact A.6 (Komatsu’s Inequality). For anyt > 0, ®(t) can be bounded as
_$2 _ 42
\f (/2 _ g < \f exp(—12/2)
Tt+Vt2+4 T+ V2 +2

Next, we provide the following fact calculated by [GV24] that relates V (), (¢), ().
Fact A.7 (see, e.g., Appendix A, [GV24]). For anyt > 0, the following fact holds.

E  20(z>t) = (1)

2~N(0,1)
z~1\];3(o,1) 2z = t)1(z > 1) = 2(t)
o) 221(z > t) = O(t) + tah(t) = (1 + 0:(1))t2®(2)

V(t) = (82 + 1)(t) — ti(t) = (2+ 0,(1)) (1) /2

For large t > 0, it is useful to mention the following asymptotic relation between ®(t) and ¢ (t),

o) 1 1 3

o) Tt BB

The following useful Stein’s lemma will also be frequently used in our proofs.

Fact A.8 (Stein’s Lemma). Let x ~ N(u,02I) be a Gaussian vector in R%. Let g : R — R such
that By N (,021) 9(%)x and By n(,,021) Vg(x) exist. Then the following fact holds

E —u)=o? E Vg(z).
WN(WZUQ(Z’)(% p)=o P P g9(z)

B Omitted Details from Section 2

Here we provide the full details omitted from Section 2.
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B.1 Proof of Lemma 2.2

We provide the proof of Lemma 2.2 and its restatement as Lemma B.1.

Lemma B.1 (Restatement of Lemma 2.2). Let ¢ : R — R be any activation function such that
o' € Ly(N) and let w € ST be any unit vector such that § := 0(w,w*) < 7 /2, then

0
. 2 m . 2
L(w) = /0 sin s HT\/@U’Hst < 5311129 oI5 -

Proof of Lemma 2.2. We write w* = aw + bu, where a,b > 0,a% +b> = land u € ST !, u L w.
Notice that if z ~ N (0, 1), then z = w - x and s = u - x are independent standard one dimensional
normal random variables.

1 2

14 = = E . — * — E 2 _ E ] -
() 2 2~N(0.1) (o(w-2) = o(w”-2)) ZNN(O,l)O- 2) mwN(O,I)U(w o(w )
= E (2)- E . . bu -
N1 ) wwN(O,I)U(w z)o(aw -z +bu - z)
= E 2 _ E b — E _Ta
sz(O,l)U (=) z,sz(O,l)U(Z)U(aZ+ s) ZNN(OJ)U(Z) (o(2) o(z))
1 1 .
dTso(2) 1 1
- s ds=__E — LT = E ZLT,
z~N(0,1) Z)/a ds ds ZNN(o,l)U(Z)/a S s0(2)ds /a z~N((),1)a(Z)s so(2)ds
(2)
1 1 1
= E / - Ts /d — E / Ts 7 d 3
/a ZNN(OJ)U (2)5( o())'ds /a z~N(0,1)U (2)Ts0'(2)ds 3

1 0
:/ HT\/ga’szs:/O sinsHT\/mo’szs.

Here, (2) follows Item 4 and (3) holds because of Item 3 and Item 5. The last equation follows a
change of variable. By the monotone property of ||7,,0”||, and 6 < 7/2sin6 for 6 € (0,7/2), we
obtain that

0
. 2 m . 2
f(w) = /0 sin s HT\/@O’IHQdS < 5511120 HO'/||2 .

B.2 Proof of Lemma 2.3

Here we provide the proof of Lemma 2.3 and its restatement Lemma B.2.

LemmaB.2. Let o : R — R be any activation function such that o' € Ly(N(0,1)) and letw € S?~!
be any unit vector such that 0 = 0(w, w*) < 7/2, where err(c(w*)) = opt. Write w* = aw + bu,

where u € ST u 1L w,a,b > 0,a® + b? = 1, then, proj,,. V,l(w) = —b ||T\/EO'/H§ U.

Proof of Lemma 2.3. By Fact A.5 and Fact A.8, we have the following calculation

Proj,+ Vyl(w) = proj,, . $~A][5%0J) (c(w-z) —o(w* - x))o'(w-z)x

=proj,. E o(w-z)o’(w-z)r—proj,. E ow" z)(w-z)x

2~ N(0,1) 2~ N(0,1)
= projus B ol o' s = projys B Valow )’ )
= projus B (@) w4 o -a)e - 2))
=— :L’~]\]/520,I) o' (w* - z)o' (w- z)bu = — Z7SJEV)(O)1) o'(az + bs)a'(z)bu
=— ZN]\][E‘EOJ)TQO'/(Z)UI(Z)Z)U =-b ||T\/EO‘/H§ u.
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B.3 Proof of Lemma 2.4

We next give the proof for Lemma 2.4 and its restatement as Lemma B.3.

LemmaB.3. Let o : R — R be any activation function such that o' € Ly(N(0,1)) and letw € S?~!
be any unit vector such that 0 = 0(w,w*) < 7 /2, where err(o(w*)) = opt < e. Then for any
ve ST andv L w, |proj,. (Vyerr(w) — Vi, l(w)) - v < Ve||o'||y

Proof of Lemma 2.4. We notice that

proj,. (Vyerr(w) — V,l(w)) = proj,,. ]\],3 (o(w* -

For every v € S?=1 and v L w, we have

LE, o) =y o a)(a-v)

< \/xw]\llizo,l) (o(w* - 3;) — y)Q\/mNA];zO’I) (o' (w - z)(z - ’U))2
=vem,[ B @@ < VeIl

z,s~N(0,1)

|proj,, .+ (Vyerr(w) — Vi b(w)) - v| =

Here, in the first inequality, we use Holder’s inequality and in the last inequality, we use the fact that
z, s are independent. O

B.4 Proof of Lemma 2.5

We next give the proof of the angle contraction lemma as follows.

Lemma B.4 (Angle Contraction). Let w*, w® € S such that w* = aw'?) + bu, where u €
S u L w®,a,b>0,a% +b% = 1. Let §; = O(w®,w*). Let G € R be a random vector such
that with probability 1, G L w9, Let g be the mean of G and § € R%. Suppose there is some ¢ > 0
such that g - v > ¢b/10, ||g|| < ¢b,|lg — gl < bc/40, then by setting p = ¢/20, the update rule

w1 = projga—: (w + pg) satisfies sin(0;11/2) < /1 — (2—%)2 sin(6;/2).

Proof of Lemma 2.5.

. 2
i+1) ) %

2
w| =

. 2 .
projeas () + ug) — projgs-s (w*) | < [|w® + g - w’

o

It remains to upper bound Hw(i) + pg — w* H2 We have

2 . 2 .
= || = | 209 (0 = w?) + 42 12

o

— [Jw® —w||” = 204 - w + 2 (191
i 2

= || —w*||” —2pg - w + 2u(g — §) - w* + 1 3]
. 2

= |[w —w*|| = 2pg - w* +2u(g — §) - bu+ p* ||g]|*

2
. ~ A2
< [w® —w*|| —2ug - w* +2ubllg — gl + 12 |91 -

= ||w® —w*

2
— 2ubg - u+ 2ubllg — g|| + p? (|91

Here, in the second equality, we use the fact that § L w(?) and in the fourth equality, we use the fact
that (g — 9) - w* = (9 = 9) - aw' + (g — g) - bu = (g — 9) - bu.
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Notice that Hw(i) —w*|

= 2sin % and b = sin ;. By choosing 1 = 1/C' < ¢/20 We have

0; b;
(2sin ;1 )2 < (2sin 5)2 — peb? /5 + puch? /20 + p?c*b?
2 0i

. b 2 .92 0; pe. . c\?, . 2 0;
< — ) — — = - — — = — [ — —
(2sin 5 )* — pesin 5 /5 =4(1 20) sin” 5 4(1 <20) ) sin 5

This implies sin(0;11/2) < /1 — ()" sin(6;/2). O

B.5 Proof of Lemma 2.6

For convenience, we restate the lemma below.
Lemma B.5. Let 0 : R — R be any activation function such that o’ € Ly(N(0,1I)). Let o« > 1
and 0 < 6y < /2 such that ||T\/70’Hz > ||U’H§ Ja. Let w € S~ be any unit vector such

cos O
that 0 = 0(w,w*) < 6o, where err(o(w*)) = opt < e. Ifsin® 0 ||a'||§ > 20a%e/m, then for any
veSTlandv L w, ||proj,. (Verr(w) — Vi b(w))|| < [[proj,. Vwl(w)| /20. Furthermore, if
lproj,. (Vwerr(w) — Vi l(w))]| > ||proj,. Vwl(w)|| /20, then err(w) < O(aZe).

Proof of Lemma 2.6. Since sin? 0 HO'/”g > 20, we know that /e < sinf||o’||, /v20a2. By
Lemma 2.4, we know that

[proj,. (Vwerr(w) — Vi b(w)) - v]| < vello'|l, < sind [|o’||* /v20a2
<sind HTma’Hz /V/20 = ||proj,,. Vo l(w)|| /v/20.

Here, the last inequality holds by the monotone property of || T,0’||. On the other hand, if
Iproj,,. (Vwerr(w) — Vy,b(w))|| > [|proj,. Vwl(w)| /+/20, by Lemma 2.2, we know that

err(w) < ]lic] (o(w-x) —o(w" - x))* + ]E (o(w* - z) —y)* < 20pt + ]5 (o(w-z) —o(w* - z))*

< 20pt + 7wsin? 0 [|o’||5 < O(ae).
O

Combining Lemma 2.2, Lemma 2.3, Lemma 2.4, Lemma 2.6, we know that the update rule (1) satisfies
the following property. Suppose we are given a warm start () such that ||T /o050 H; > |lo’ ||§ /.

cos 0y
As long as the current w has large angle, and thus has large noiseless error, the noise rate is much
smaller than the length of the gradient used in the update and the angle can be improved. On the
other hand, once the length of the gradient is small and the noise level is large, it must be the case
that the angle is small enough so that the error of the current hypothesis is as small as O(a%¢). We
next use this property to show that when ||[W*|| = 1 and ¢* > 0 is given, we are able to solve the

ReLU regression problem with label complexity O(1/p + dpolylog(1/e)).

B.6 Proof of Lemma 2.8

We start by proving that using a method of label truncation, we are able to reduce the initialization
for ReLLU regression to the initialization for agnostic learning of halfspaces. We present the proof of
Lemma 2.8 and its restatement Lemma B.6.

Lemma B.6. Let o be an activation f the form o(z) = Relu(z — t*), where t* > 0. Let y(x) be any
labeling function such that opt < €. Let ¢ > 0 be a suitably small constant. If V (t*) > C, for some
large constant C, then Pry..no,1) (J(7) # sign(w* - x — t*)) < ®(t*)/C" for some large constant
C' > 0, where j(x) := 1{y(x) > ¢/(t*)}.

The idea of the proof is as follows. Since the labels are continuous, for those examples with ground
truth labels very close to the threshold ¢/(¢*), we are not able to control their behavior. But on the
other hand, for those examples with ground truth labels that are far from the threshold, to change
their pseudo-label g(x), the adversary must add high-level noise to them. We will show that as long
as h = 0 does not have error O(¢), we can reduce the problem to halfspace learning by carefully
choosing c.
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Proof of Lemma 2.8. We partition R? into three regions I; = {x | w* -z > t* + 2¢/(t* +
DhIy ={z | w2z < t}and J = {z | t* < w* -2 < t*+ 2¢/(t* + 1)}. Since
opt = B, no,) (0(w* -2 —1*) — y)® /2 < €, we have

> E lp ) —y)2/2
G—INMO,U(U(“’ r—t")—y)"/

> E 1{zeclul L) —g)2 /2
= {freLUubL}(o(w" z—t*)—y)"/

z By Mz e hy@) </t + 1z € byy(z) > c/t"}) (o(w” -z —17) = v)* /2

C
> _ p LUT 0
2 S T 1) e (x € LU L,y(z) #y(x))

Since E,n (0,1 o(w* - & — t*)® > Ce, we obtain that

20t +1)2 2"+ 1)*E o g %2
Pr (xe ULy £i) < 2Lt 2+ D Bevvon o(w” -2 = 1)

< ®(t*
2~N(0,T) 2 = O < O(t%)/Ch,

for some large enough C; > 0.

On the other hand,

Pr (wedy@) £§@)< Pr (weJd)<— L < (t*)2> < 10¢B(t*)

) = >~ X — < .

2~ N(0,1) y 4 z~N(0,I) (t*+1) v2r P 2
Thus,

P y i Lx—t*)= P y P LUI y
P (o) Asignw o) = Pr (e Ly@) £5(@) ¢ Pr (o€ hULy() £ )

< B(t*)/C1 + 10c®(t*) = ®(t*)/C”

for some large enough C" > 0. O

B.7 Proof of Lemma 2.7

Using the initialization technique recently developed in [DKM24], with label complexity O(1/p +
dpolylog(1/¢)), we are able to get a w(®) with 5 < O(1/t*). We next show that such an angle
satisfies Lemma 2.6 for o = O(1). We provide the proof of Lemma 2.7 and its restatement as
Lemma B.7.

Lemma B.7. Let 0 = o}. be the optimal activation function of the form o(w* - x — t*), where o
is the ReLU function, w* € S and t* > 0 is known. If sin(0/2) < 1/t*, then HTWU/H; >

lo” 3 /50.

Proof of Lemma 2.7. Letw € S%~1 be any direction such that sin(#/2) < 1/t*. Write w* = aw-+bu,
where u € S u L w,a,b>0,a® 4+ b> = 1. By Lemma 2.5, we know that

* * * * 2
a:~1\]7520,1)0(w cx— o (w* - x — ") (x - u) szTma’HQ.

To show !’Tm0/||z > ||a’||§ /50, it is sufficient to show that E, .y 0,5y o(w* -z —t*)o’ (w* - 2 —

cos
) x-u)>b ||O'/H§ /50. Write z = w-x, s = u-x. Notice that z, s are independent one-dimensional
normal random variables. We have

E * . o t* / . _ t* . — E b _ t* / _ t*
o o(w* -z Yo' (w - x )z - w) Z’Scr(az + bs Yo' (z )s
=Eod'(z—t")Eo(az +bs —t*)s

=bEo'(z —t*)Eo'(az + bs — t*).
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Notice that o/ (z — t*) = 1(z > ¢*). We have

VB ) Bo'(az +bs— 1) =b [0/~ ) wle) B TEF ST

t*

dz

=0 [Tt BT e

. s ol(z—1t¥)

t* —az

)dz

(02— ) d(2)dz (s> T

r
* s~N(0,1)

J
>0 [ @) e B s - T s
J >'

b(1+a)

Since sin(6/2) < 1/t*, we know that b < 2/t*, which implies that Pr,_y(o.1)(s > jites) >
Pr;(s > 2) > 0.02. Thus, we obtain that

E o — e (W x— )z -u) > bllo’||? /50.
mNN(O’I)G(w x—t")o'(w" -z —t")(x-u) > b5/

B.8 Proof of Lemma 2.10

Here we show how to use queries to boost the gradient used by (1). The idea behind our
proof is that if we consider the random vector G = (o(w -z —t*) — y(x)) proj,,.x, where
x ~ N(0,I) |{z|w-e>t-}» then with the warm-start we have that the expectation of such a ran-
dom vector plays the same role as the gradient V ,err(w), but has larger length and small variance.
This allows us to estimate it to a desired accuracy with few queries. We provide the proof of
Lemma 2.10 and its restatement Lemma B.8.

Lemma B.8. Let 0(z) = Relu(z — t*), with t* > 0. Ler y(x) be any labeling function
such that opt < e. Let w € S%! be any vector such that sin(6/2) < 1/t*. Denote by
G* € RY the random vector (o(w - x — t*) — o(w* - x — t*)) proj,,. = and G the random vector
(o(w-x—t*) —y(z)) proj,.x, where x ~ N(0,1) |{g|w.a>t-}- Then the following holds:

1. EG* = b||T 50" |2 u/@(t").
2. [(BG" —EG) -v| < Ve|o'|l, /().

3. Ifsin® 0D (t*) > ¢, then B(G - v)? < O(b?), Vv € S,

Proof of Lemma 2.10. We first prove the first item.
EG" = E olw-x—t*) —o(w* - o —t*)) proj,.x
2N (0,1) (af oz stv) (o ) —a( )) Projy,.

= E Nw-az>t" x—t) —o(w oz —t* i /D(t
B M a> o — ) = o(w” -z — 1) proj,,. o/ ®(t")

wNN(O,I)U(w v ) (o(w -z ) —o(w* -z ) proj,,.x/®(t*)
2 *
= —b||Tyao'||, /®(t")u

Here, the last equation follows from Lemma 2.3.
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We next prove the second item.

BG -G ol =| B ) -l o= ) (0 0)

= | B Hw-z> ) @) - o' =1 (- v>>\ Jo(t")

—| B, o ) ) = 0w ) )| o)

< Vello'lly /2(t7)
Here the last inequality follows from Lemma 2.4.
Finally, we control the variance of G. We have
E(G-v)? <2E((G—G*)-v)* +2E(G* - v)*.
We bound the two terms separately.
E(G* -v)? =
2N (0,1)| (fuw-z> %

= oy Hwz >} (o(w-z =) —o(w™ -z - )% (- 0)2/®(t%)

< B MHwer> ) (w-w') o) (@0)/e)

(o(w-z—t*) —o(w* -z —t) (z-v)?

Recall that w* = aw + bu, where v € S !, u L w,a,b > 0,a® + b> = 1. We have
E(G*-v)? < ]\];](0 N Hw- 2>t} ((1—a)?(w-z)>+b%(u-2)%) (2 0)%/(t")

= B Hwz >3- a)?(w-2)2(z - 0)2)O(t) + 1w -z > t*} (B (u- 2)?) (x - v)?/D(t")

<O0Y) E1{z > t*}222/®(t*) +b* E 1{z > t*}s*r?/®(t*) < O(V?)

In the second last inequality above, we use the fact that 1 —cos§ < O(sin® @) and E, 1{z > t*}22 <
O((t*)2¢(t)) and b < O(1/t*).

‘We next bound the first term. We have

E((G"~G)-v)’= E (y(@) = o(w* -z = 1")* (z - v)?)

xNN(O7I)‘{x|1AJ-x>t*}

= B W) —ow e =) (@0 M x> £}/ ()

Let M > 0 be a threshold such that E, (o 1) 2°1{|z| > M} < e. Notice that if we set 3 =
sign(y) min{|y|, M}, then we will only introduce at most € error. So, we can without loss of

generality, assume |y| < M. In particular, for ReLU activation, M < O(y/log(1/¢)). Based on this,
we obtain that

B(G ~0) )= B () ol =) (@) Lw 2 > ' 1{(z-v) < M}/B(")
mN%I) (y(z) —o(w* -z — ) (z-v)*1{w -z > tI{(z-v) > M}/D(t)
<optM?/®(t*) +4M?* E  (z-v)*1{w-z > t*}1{(z-v) > M}/®(t*)

z~N(0,1)
< eM?/®(t*) + 4eM? < sin®> 0M? = O(b?) .
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B.9 Proof of Lemma 2.11

In this section, we present the proof of Lemma 2.11 and the corresponding hypothesis selection
algorithm. For convenience, we first state a formal version of Lemma 2.11 as follows.

Lemma B.9 (Hypothesis Selection with Queries). Let D be a distribution over R? x R and let D,, be
the marginal distribution of D.. There is an algorithm that, on input a list of hypotheses h1, ..., hy
such that for i € [k], hi Rd — R,E,p h?(z) exists, it makes poly(k) queries and returns a

hypothesis h such that err(h) < O(mine(r By y)~p (v — hi(2))?).

As a subroutine, we will use later, we present the following well-known median-of-mean estimator.
Lemma B.10 (Median of Means Estimation). Let G € R% be a random vector such that for every
i € [d), BE(G-x;)* < B2 Then there is an estimator that takes M = O(log(1/8)dm), i.i.d. samples
from G and computes a vector g € R? such that with probability at least 1 — 6, ||g — EG|| < B//m.

In this hypothesis selection problem, we only need to use the version for d = 1. Roughly speaking, if
a random variable has a bounded variance, then very few samples suffice to estimate its mean. We
present the following algorithm.

Algorithm 2 HYPOTHESISSELECTION(Select a good hypothesis from a list of hypothesis)

1: Input: hy, ..., h such that for i € [k], h; : R — R,, D, a marginal distribution over R¢
2: Output: i : RY — R, such that err(h) < O(min;ep) E(z4)~p(y — hi(x))?) with non-trivial
probability.

3: Let d(x) be the density function of D, at x
4: Create an empty graph G with a set of node [k]
5: for each (i,7),i # j € [k] do
6: For each pair of (i, j) create a hypothesis g;;(z) = %
7: Denote by D,; the distribution over = with density proportional t(z gf% (z)d(z)
. . it+h; .
8: Use the median of mean method to estimate E,p,, (y(z) — =5 )gij(x)/gfj (z) with
poly(k) samples
9: If the estimated result is more than ||h; — h;||, draw an edge from ¢ to j

10: Return any h; such that 7 is in a source strongly connected component of G

Proof of Lemma 2.11. We first observe that

h; +h;
err(hi) —err(h) =2 B y(hy —hi) + [hill* = b5 =2 B (y— =) (h; — ha),

which means to compare the error of h;, hj, it is sufficient to check the sign of E,.p, (y —

highj )(h; — h;). And this is equivalent to check the sign of E,.p, (y — b +h
by our construction, ||g;; ||, = 1. Notice that

£)g;;. We remark that

hith;
hi+hj 9 _ (y—%) 9 _ hi-i—hj
B o (@)/5(x) = B, 0(0) = i—ah(x) = B, (= =5 )g(x).
Furthermore, consider the variance of the above quantity, we have
h +hJ 2 2 hz+h] ng'zj(x) 2 hl—‘rhj 2
E (y— 2 (1) = |[(y — ==L 20)|| .
oDy, 9 ) ( )/gw( ) 2D, (y 9 ) g;;j (Z‘) Gij (fE) (y 2 ) )

By Lemma B.10, we know that with poly(k) samples we are able to estimate E,.p_ (y —
hi +h

£)g;j(x), with error H(y - ]“;—7) ‘ /poly(k). We consider a fixed pair of (h;, h;). Assume

H(y— %) ‘ > ||h; — hj||, then we have
hi+ h; ||(hi—h‘)|| 3
s = ol = o = 2520 |+ DT R < i -y s i
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which implies ||h; — y|| < 3|h; — y||. By symmetry, we have ||h; — y|| < 3||h; — y||. This implies
if |h; — y||*> > 10||h; — y||%, then we must have H(y — hiths) ‘ < ||hi — hj||. We next prove that

if | hy — y||> > 10 |h; — y||?. then there must be an edge from j to i but no edge from i to j. Recall
that

hi + h; B [
oD, Yy— B )(h] _hl) = mNE}DT y(h] _hz) - 9
1 ) ) ) o Il = llhall? L9 >
=5 (1R = yll* = Iy = yl* + g |1* = 1hs]*) = 5= = 5 iy —

Since
1hi = hill = 1hi = yll = lhj = yll = (VIO = 1) [[R; =yl
we have ||h; — y|| < ||h; — hy]| /2. This gives

h; + h; 9 2
= J —h) > = - hall? .
JE 5 )y = hi) 2 S llhi = hy]
Thus, when |[2; — y||” > 10]|h; — y|%, we have E,p, (y — 25" g5i > 9|[h; — h;]| /8 and the

estimation of this is larger than ||h; — h;|| with high probability. Thus, there must be an edge from j
to ¢ and no edge from 1 to j.

On the other hand, if H (y — hLQhJ)

‘ > k2 || — hy

, then we have
hi + Iy [(hi =Rl _ (1 1
<\|5+ 3 ) Uk — hi —yll),
el RS KR R PR
which implies ||h; —y|| < (1 + 1/2k?)||h; —y||. By symmetry, we have ||h; —y| > (1 —

1/2k2) ||hi — yl|. If ||k — y||* < ||h; — y||%, then we have Eyg;; < 0. Since we have estimated
_ hithita H
2

b — gl < ]<y—

/k?, this implies unless ||h; — y|| and ||h; — y|| are within a factor

E yg;; up to error ‘ Y

of 1 4 1/2k? of each other, there will be no edge from j to i. Thus, if there is an edge from j to i,
then it must be the case that ||h; — y|| > [[h; — y|| (1 — 1/2k?).

Now, we consider any source strongly connected S in G. For every pair of (4, ) in S, there is a cycle
C' that contains (4, 7). Without loss of generality, we write C = (1 — 2,...,m — 1), where m < k.
We will show that every h;, 4 € C has similar error. We prove this via contradiction. Assuming there
is a pair of (4, 7) in the cycle such that ||y — h;||* > 25 ||y — hy||*, then there must be an edge from
i to j. Without loss of generality, we assume ¢ = m and j = 1, otherwise we can prove the same
statement over a smaller cycle. Since for every ¢ < m — 1, there is an edge from ¢ to ¢ + 1, this
implies

k
1 5
lones =912 (1= 525 ) s =l =l /2.2 3 o =,

which implies that there should not be an edge from m — 1 to m. Thus, for each pair of (7, j) in a cycle
C. ||hi —y||* < 25 |h; — y||>. This implies that any source strongly connected component S cannot
contain a vertex j such that ||y — hy||* > 25 min;ex) Eqz)~p(y — hi(z))?. To see why this is true,
we consider two cases. Let ¢* be the vertex such that [|h;+ — y|| = min;e ) Bz y)~n(y — hi(x))?
If S contains i*, since S is a strongly connected component, each pair of (4,7*) is contained within
some cycle and their error must be within a factor of 25. On the other hand, if i* ¢ S and S contains
some j such that ||y — h||* > 25 mine ) E(,.)~n(y — hi(x))?, which implies that there must be
an edge from ¢* to j and S cannot be a source strongly connected component. Notice that every
time we make a comparison between h;, h;, we only use poly (k) samples, thus the total number of
queries we make is poly (k).

Since for every pair of nodes (i, j), there is a cycle such that (7, j) are both in the cycle. In this case,
lly — hi|| and ||h; — y|| are within a factor. Let i* be the index such that ||h;+ — y|| is minimized. We
claim that C' does not contain some j such that ||h; — y|I> > 10||hs= — y||*. If so, then there must be
an edge from ¢* to j. Since C is a source strongly connected component, then ¢* € C, which implies
that (¢, ¢*) must be in the same cycle, which gives a contradiction. O
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B.10 Proof of Theorem B.11

Finally, we give a query-optimal learning algorithm that solves the general ReL.U regression problem
for the special case where |[W*|| = 1 and t* > 0 is given.

Theorem B.11 (Query Learning for Spherical ReLU). Consider the problem of agnostic PAC learning
GLM with membership queries under the Gaussian distribution. Suppose the optimal activation
function ¢ = o}. is of the form o(w* - x — t*), where o is the ReLU function, w* € S%1 and
t* € R is known, there is an algorithm such that for every labeling function y(x) and for every
€,0 € (0,1), it makes M = Og(min{l/p, 1/€} + d - polylog(1/e)) memberships queries, runs in
poly(d M ) time, where p = ®(t*) is the bias of the optimal activation function o, and outputs an
h=o(i-z—t*),we S, such that with probability at least 1 — 6, err(h) < O(opt) +e

Algorithm 3 SPHERICALLEARNING(Learn w* over the unit sphere)

1: Input: error parameter € € (0, 1), confidence parameter ¢ € (0, 1)

2: Output: / : RY — R, such that err(h) < O(e) with non-trivial probability.

3: Call INITIALIZATION(t*) to get w(®) and return () = 0 if no w(©) is returned.

4: fori=0,...,T —1do

55 forj=1,...,0(d) do

6: Generate z) > 0 with probability ¢(t* + 2(?)/®(t*) and u) L w® ~ N(0,1)

7: Query y(z9)), where 2w 4+ 47

8:  Estimate EL Y™ (o(w® . 20) —*) — y(z))) ul9) via median of mean and get g*
9: wit) = Projga—1 (w(i) + ug(i))

10: return w™)

. procedure INITIALIZATION(Find a warm start w(®) given ¢*)

—
—

12: Input: ¢t* > 0

13:  Output: w(® € S9! such that §(w®, w*) < 1/(2t*) or assert err(0) < O(e).

14 if®(t*)/(t*)? < O(e) then

15: Assert err(0) < O(e).

16: else

17: Run the initialization algorithm for query learning halfspaces (Algorithm 2/Algorithm

5 in [DKM24]) by simulating binary membership query with § := 1{y > ¢/(t*)} for small
constant ¢ > 0 and denote the return of the algorithm by w(®)

Proof of Theorem B.11. In each round of Algorithm 3, we wuse 6; to denote
O(w® w*) and we denote by G¥ € R? the random vector be the random vec-
tor (o(w® -z —t*) —o(w z—t)) proji,myrx and G; be the random vector

(o(w® -z —t*) — y(z)) Proj(yiny1 @ , where £ ~ N(0,1) |71 o517}

By Lemma 2.8 and Lemma 2.9, we know that the subroutine INITIALIZATION takes O(l/p +

dlog(1/€)) queries and output a unit vector w®) such that with probability at least log(1/®(t*)),
sin(f/2) < 1/t*. In the rest of the proof, we assume INITIALIZATION succeeds. Let @ = 50.

By Lemma 2.7, let « = 50, we know that if 6; < 6, then ||Tmo' || > ||a’|| Ja. Let
¢* € (0,7/2) such that sin® ¢* = 20a2¢/(m ||a’|\2). Lemma 2.6 implies that if §; < ¢*, then
err(w) < O(a?e) = O(e), since a = O(1).

Recall that for activation function o(z) = ReLU(z — t*), we have ||o’ ||§ = O(¢*). We will show
that for if 6; < 6y and 6; > ¢*, then with high probability, §; 1 < (1 — 1/C)6; for some constant
C > 1. Write w* = aw® + bu, where u € S* 1, a,b > 0,a® +b> = 1. By Lemma 2.10, we known
that

EG; = proj(wm)LVwﬁ(w(i))/CD(t*) =b HT\fU’H;u/CD (t*)

[(EG™ —EG)| = [[proj,. (Vwerr(w) — Vi l(w))|| /@(t") < Vello'|ly /()
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By Lemma 2.6, we know that if ¢* < 0; < g, then || (EG* — EG)|| < ||E G;|| /20. This implies
that

1
EG - u=EG -u=EG utBGi—G) u> 3 2B G > 1900 /20.

Furthermore, since |[EG|| < 2L [[EG;||, Lemma 2.5, we know that by estimating G upto error
IEG]| /4() thenf,1; < (1—1 C)H for some large constant C' > 0. By Lemma 2.10, we know that
E(G - v)? < O(b?log(1/e)), Vv € §~'. By Lemma B.10, we know that in each round of update,
we only need O(d) queries. Since we only need O(log(1/¢)) rounds to make 6; < 6*, the query
complexity of Algorithm 3 is O(1/®(t*) + dpoly log(1/€)). O

C Omitted Proofs from Section 3
In this section, we provide the missing details for solving the general ReL.U regression problem.

C.1 Proof of Lemma 3.2

We start with the initialization algorithm. We provide the proof of Lemma 3.2 and its restatement
Lemma C.1 as follows. The key point of the lemma is that if we have a reasonable initial knowledge
about r*, t*, we are still able to do the initialization.

Lemma C.1 (Initialization with Raw Knowledge). Let o be the ReLU activation function. Let
h* = r*o(w* - @ — t*) be the optimal hypothesis. Suppose that (r*)>V (t*) > Q(e), there is an
algorithm such that given parameter r,t > 0 such that v < r* < 2r and |t — t*| < 1/log(R?/e),
it makes M = O(1/p + dlog(R?/¢)), runs in poly(d, M) time, and with probability at least
1/1og(1/p), outputs some w® € S such that sin(0(w®, w*)/2) < min{1/#*,1/2}.

Proof of Lemma 3.2. 'We consider the truncated label §(z) = 1{y(x) > cr/t}, for a suitably small
constant ¢ > 0. We will show that the truncated label 7(z) can be seen as generated from the
halfspace h*(z) = sign(w* - © — ¢*) corrupted with adversarial label noise with level at most
®(t*)/C for some large enough constant C. By the assumption that (7*)?V (t*) > Q(¢), we have

t* < O(y/log(R?/e)), otherwise, h(z) = 0 has error O(¢). On the other hand, we can assume
t* > 1, otherwise, estimating E, (o, 1) y(w)z with constant error is enough to get a w(® such that
sin (w(®, w*) < 1/C. With these assumptions, we use a similar argument as we did for the proof
of Lemma 2.8 but with a more careful analysis.

We partition R into three regions I} := {z | w* -z > t* + 2¢/t}, I, := {x | w* - x < t*} and
J = {z|t* <w* -z <t* 4 2¢/t}. Since opt = E, n(o,p) (rfo(w* -z —t*) — y)? /2 < e, we
have

e> E (ro(w-z—19))/2

~ 2~N(0,I)

> B UHrehUL} (ol o—)- y)* /2

> oy Meehyl) <er/th+ Uz € b y(@) > er/t}) (Mo(w” -z =) - v)* /2
027"2

> o5 P(I(‘) N (z € 1 Ul y(z) # y(x))

Since E, _n (0,1 (r*)%0(w* - & — £*)? > Ce, we obtain that
2t2 2t2 ExNN(O I)(r*)za(’w* R E*)Z —

P I; UL T < < ’ < O(t*
sz(I(‘),I) ({E el U Qay(x) 7& y(x)) = ’1"2 CCQ = ( )/Clv
for some large enough C > 0. Here, we use the fact that r < r* < 2r, t* < O(y/log(R?/¢)) and
t— ] < 1/ log(R/e).

On the other hand,

c2

_ 2¢ 1 (t%)? .
< — — <
mwg(r(‘“) (z € Jy(x) # g(x)) < z~]I\?(IEJ,I) (xelJ)< PV exp ( 5 ) 10c¢®(t).
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Thus,

b G W) 7 sign(w” -z PN=_br @ely@)#y@)+ Pr (velUl,y(n)#y()

< O(F)/Cy + 10cd(T*) = B(T*)/C"

for some large enough C”” > 0. By Lemma 2.9, we are able to efficiently obtain a direction w° that
satisfies the statement of Lemma 3.2. O

C.2 Proof of Lemma 3.3

We next present the proof of Lemma 3.3 and its restatement Lemma C.2 to decompose the noiseless
error for the general ReLU regression problem.

Lemma C.2. Consider the problem of agnostic ReLU regression with queries. Let r > 0,w €
St > 0 and O(w,w*) = 6. Ift* < O(y/log(R?/¢)) and |t — t*| < 1/log(R?/¢), then

0
*\2 2 g3 2 * *\\ 2
Lr,w,t) < (r) /0 sin s || T jeoz0” (2 — )H2d5+2~1\]/520,1) (o(rz—1t) —o(r*z —t*))".

Proof of Lemma 3.3. To simplify the notation, we denote by A’ = h(r*, w,t*). Notice that

_ 1 2 1 2 2 2
/ t)y==- E h—h)Y"== E h—h +h —h*)" < E h—hn h —h*
(r, ) 2 z~N(0,I) ( ) 2 z~N(0,I) ( + ) < z~N(0,I) ( )+ )
On the one hand, we have
E (h—h)Y’= E (ctrw-z—t)—c(rw-z—t)>= E (o(rz—t)—o(r*z—1t"))>

z~N(0,1) x~N(0,I) 2~N(0,1)

On the other hand, we have

E h—h* 2 _ E e — ) — ke — tF 2
xNN(O,I)( ) oD (o(r*w -z ) —o(rfw* -z )

— *\2 E cx— ) — L P 2

(P B, (olwa—) o 2 1)

/]
=) [ s |7 o~ ) s

Here, the last equation follows Lemma 2.2. This implies

0
Lr,w,t) < (7“*)2/0 sins || T /eoss0" (2 — f*)H; ds + z~1\]/520,1) (o(rz—t) — o(r*z — t*))2.

C.3 Overview of Query Learning Algorithm
In this section, we present the analysis for the algorithm corresponding to Theorem 3.1. For
convenience, we present Algorithm 4 as follows and give a brief overview of it.

Theorem C.3. Consider the problem of agnostic general ReLU regression with queries under the
Gaussian distribution. There is an algorithm such that for every labeling function y(x) and for every

€,8 € (0,1), it makes M = Og(min{1/p, R?/e} + d - polylog(R?/¢)) queries, runs in poly(d, M)
time, where p = ®(t*) is the bias of the optimal activation function, and outputs an h such that with

high probability at least 1 — 6, err(h) < O(opt) + .

We remark that the dependence on R? /¢ is due to the natural scaling of the squared /5 loss. If we
want to learn Ro(w* - x — t*) up to error €, this is equivalent to learning o (w* - & — t*) to error ¢/ R2.

Given a ReLU activation, h(r;, w(i), t;), define random vectors

G;k = (h(ria w(2)7tz)(m) - h*(x)) proj(w(’i))i—(x)
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and its noisy version
Gy 1= (h(risw,£)(@) = y(x) ) projuny: (x) .
where 2 ~ N(0,1) |,,().,~z,. Define random variables as follows

U = (h(ri,wD, t;) — h*)(wD - z), FF == —(h(ry, w?, t;) — h*),

7

and denote by U;, F;, their noisy version, namely

Ui:= (h(rivw(i)vti) - y)(w(i) : x),Fi = 7(h(rivw(i)vti) - y) .

Algorithm 4 QUERYLEARNING(Learn optimal ReLLU with a warm start)

1: Input: w® € S : unit vector such that 6y < 1/polylog(R?/e). ro > 0 : such that
|r* — ro| < 7*/polylog(R?/e), to : [to — t*| < polylog(R?/e).
Output: 5 : RY — R, such that err(k) < O(e) with non-trivial probability.
By = r¢/polylog(R? /)
for;:=0,..., 7 —1do ~

Generate polylog(R?/¢) samples 2(9) ~ N(0,1) | {w® -z > t;}. Query y(2/)) and use
them to get an estimate g; for (EU;, E F;).

6:  if ||g;|| > B;polylog(R?/e¢) then
7: Set (740, ti0) = (7i,t;) and update (745, t:5) = (75j—1), tij—1)) — (gij)/polylog(R?/e)
until ||g;;| < Bipolylog(R?/e)
8 (rit1,tiv1) < (rij, tij)
: for j=1,...,0(d) do
10: Generate ) ~ N(0,1) | {w(*V -2 > t,,1} and query y(z()))
11: Estimate E GG; via median of mean and get G’i

12: w1 = projga— (w(i) - ,ué7>

13: Bi—i—l = (1 - p)Bz

14: ) = w™

15: Build a unit grid of size 1/polylog(R?/¢) over the ball centered at (rr, t7) and randomly select
a pair (7, 1) from the grid.

16: return h(7, 1, t)

We now proceed with an intuitive explanation of Algorithm 4 and its analysis. The detailed analysis
is carried out in the rest of the section. We are given a tuple of initial parameters (rg, w® o) such
that each of them are close to the true parameters up to a 1 + 1/polylog(R?/e) factor. We remark
that by Lemma 3.2, we are only able to get some w(%) such that y < 1 /t*, but as we will show
in Appendix C.4, since the other parameters are close enough, by updating w(®) for log log(R?/¢)
rounds, we are able to achieve this guarantee. We will maintain an upper bound B? for (r*)2 sin® 6
and reduce this upper bound stably in each round of the algorithm. In our analysis, we will show that
as long as the error from (7, ¢;) is within a polylog(R?/¢) factor of B, we are able to make roughly
dpolylog(R? /€) queries to safely improve w® and decrease the angle #; by a small constant factor.

Regarding the parameters (r;,t;), since they are close to (r*,t*), the task for optimizing
them can be approximately seen as optimizing the following quadratic function Z(r,t) :=
E,ono,n ((rz2 = 1) — (r*z — *))* 1(z > £*). Such a quantity nearly characterizes the contribution
of (r;,t;) to the noiseless error as well as the contribution of (r;, ¢;) to the variance of the gradient we
use for updating w(). As we will show in Appendix C.5, if BZ?®(t*) < Z(r;, t;)/polylog(R?/e), i.e.,
0; has already been updated in a reasonable range, then (E U;, E F;) is very close to the gradient of
Z(r;, t;). Thus, we are able to tell whether Z(r;, t;) is desirable by checking the norm of (E U;, E F})
due to the nature of quadratic minimization. When Z(r;, ¢;) is large, we use a standard gradient
descent to update these parameters such that Z(r;, t;) is controlled by B, within a polylogorithmic
factor. This allows us to safely update w(?) via gradient descent. When Z(r;, t;) is already close to
B;1, we do not update it. We remark that due to the noise and the ill-condition of Z for large ¢*, the
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step size we choose is 1/polylog(R?/¢) instead of a constant. After at most polylog(R? /) rounds,
w(™) is updated to a desirable accuracy. However, due to the presence of noise, we are only able
to guarantee that (rr, t7) is O(epolylog(R?/€)/®(*)) close to (r*,t*) in terms of squared norm.
Fortunately, there are only two parameters we need to worry about and they are already very close to
(r*,t*); randomly selecting a pair of parameters from their neighborhoods gives us a good hypothesis
with enough probability.

C.4 Omitted Details Regarding Angle Update

In this section, we provide the full details on the subroutine for updating the direction w*). Specifi-
cally, we will consider the following random vectors in R<. Given a ReLU activation, h(ri, w(i)7 t:),
define random vectors G} := (h(r;,w®,t;)(z) — h*(z)) Proj(,). (z) and its noisy version
Gy = (h(rj, w9, t;)(2) — y(z)) Proj (i (), where & ~ N(0,1) |,y 4>, -

C.4.1 Proof of Lemma 3.4

We first give an evaluation of the mean and the noise analysis of G. We provide the proof of
Lemma 3.4 and its restatment Lemma C.4.

Lemma C.4. Consider the problem of agnostic ReLU regression with queries. Let h(r;, w®, t;).
Write w* = aw®™ + bu, where a,b > 0,a®> +b> = 1, u € S ' u L @, Then the following
statements hold.

1 If|t; — t] < 1/log(R?/e) and b < 1/t; , then
EG! = —abr* |Tuo'(z — &) u/®(E;)
where 1/2 < o < 2.

2. [(EG* —EG) -v| < Vello'(z = t:)|l, /@), Yo € ST v L w.

Proof of Lemma 3.4. We first consider the mean of G}. By Fact A.5 and Fact A.8, we have

EG: = E (h 'ri,w(i),ti z) — h*(x ) I‘O.w .
e NOD s ( )(x) (x) ) proj,.

= B Dz > £} (h(ri, w®, £)(z) - h*(x)) Proj (. a/®(T:)

— _oroi. . ON FIR* i
PIOJ (i) wNA];LEO,I) H{w"™ -z >t h" (x)z/P(t;)

= — E 1 O >{i1 x>ttt (I)El
B O s B > /()

= INA]’%O’I) {w® -z > L3 {w* -z > & or u/®(t;)

= —br* |T,o'(z — fi)\|§u/<l>(fi) + 1\17520 N Hw® -z > G A {w* -z > G} — 1{w* -z >t })bru/d(E)

By Lemma 2.7, we know that | T,0”(z — £;)||> > Q(1)®(%;). Furthermore, we have

E o9 2> 1 {w* 2> —1{o* -z >} <
oo {@" x>t} (H{w" 2>t} - H{w" o Dl <

wNAI;J(OJ)(]l{w* x> 4} — M x> )| = o(®(H)).

We conclude that E G = —abr* | T,0” (z — £)||> u/®(%;) where 1/2 < a < 2.
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We next analyze the noise term. For every v € S*~! and v | w®, by Holder’s inequality, we have

BE-G)vl=| B ) )6 v»‘
—|, B, 10 o> B (o) - ) - o) 206
- \/zNJ\]/?EO,I)(y(x) - h*(m))2\/m1\]/5207[) Hw® -z > 1} (z-v)?

< Vello'(z = ti)lly /@(E:).

C.4.2 Proof of Lemma 3.5

We next provide the evaluation for the variance of G. We provide the proof of Lemma 3.5 and its
restatement Lemma C.5.

Lemma C.5. Let h(ri7w(i),ti) be a ReLU activation. Write w* = aw® + bu, where a,b >
0,2 +0> =1, u € S u L w®. If|t; — t*| < 1/log(R?/¢), Ce/((r*)?®(t*)) < b* < 1/82,
then

B(G 0 <O (B, (ol 1) =o'z = ) [0(8) + (2.

for every v € S*1, v L w®,

Proof of Lemma 3.5. For every v € S%~1, v 1w we have
E(G; -v)? <2E((G; — G}) -v)* + 2E(G} -v)2.
We bound the two terms separately.
4 2
E(G] -v)? = E (n(r, w0, 1) = 1*) " (@ - 0)?

JCNN(O’I)l{m(i).m>ti}

DN 0 N (202 /0(
= B ~x>ti}<h(ri,w ,ti)fh) (z-v)2/0(F;)

We next expand (h(r;, w®,t;) — h*)2 as follows:

. . . 2
= (B, 0D, 8:) = B, 0D, %) + B w0, 1) = B w0, 1))
2

. . 2 . . 2
(h(ri, w t;) — h(r*,w(’),t*)> +2 (h(r*,w(z),t*) — h(r*, w(’),t*)>
For the first term, we have

) i (hirs w® bt w® ) 2a(F
B co > G} (R w0, 8) = At w®,0) (@ 0)?/0(E)
< E 1 O >fi iz —t;) — Tz —t* 2 (I)fi
< B, Mo o> B oz - ) - o7z - £))° /2(0)

For the second term, notice that

_ 2

(J(w(i) o) —o(w - x— 5*))2 < (((1 —a)w® — bu) - x) <2(1— a)(w® - z)? + 263 (u - z)2.
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Since (1 — a) = O(b?) and b = O(£;), this gives

2
(@ . E. @ — ) — g —t* )2 /DL
z~1\]r%0,1)]1{w x>t} (o*(w x—t") —o(w* -z —1 )) (z-v)*/®(t;)

< B 1wz > £} (2(1 —a)?(w® - z)? + 26 (u - x)2)2 (z-0)2/D(T;)

<O(*' +b%) = O(b?)

This gives

BG0P <O (B, (00—t~ olr"s — ) [8(E) + (7P )

Next, we bound the variance of the noisy term.

* 2 _ z) — h*(2))? (z - v)?
BUG =60 =| B @)= @) @)
= B, @)~ K@) (@0t > L)/a()

Let M > 0 be a threshold such that E. .y ,1) 221{|z| > M} < ¢/R?. Notice that if we sety’ =
sign(y) min{|y| , r; M}, then we will only introduce at most € error since |r; — r*| < r*/log(R/e).
So, we can without loss of generality, assume |y| < M. In particular, for ReLU activation, M <

O(+y/log(R?/¢)). Based on this, we obtain that
E((G;-G)-v)’= E  (yl)=h"@) (@ v)* 1w -z > L}{(z-v) < M}/2(F)

x~N(0,1)
B, @) @) @ 01w > B {G0) > MY/
<optM?/®(t*) +4M?  E  (z-0)?1{wD -z > L} 1{(z-v) > M}Y/®(;)

z~N(0,I)
< eM?/D(t;) + 4eM? /D (t;) < sin® OM? = O((r*)?b? log(R? /e))
Thus, we conclude that

B(G 0 <0 (B (ol =) = ol — 1) /80 + (V)

C.4.3 Progress on Angle Update

In this section, we analyze the progress made over the update of w(?). We present the following
lemma for measuring the progress on w(®).

Lemma C.6. Consider the problem of agnostic ReLU regression with queries. Let h(r;, w®), t;) bea
ReLU activation function. Write w* = aw(i)_—k bu, where a,b > 0,02 +b> =1, u € S* 1,4 L w®.
Suppose |t; — t*| < 1/log(R?/e), b < 1/t; and |r; — r*| < r* /polylog(R?/e). Let B; > 0 be a
parameter that satisfies the following property:

1. E.on,5) (0(riz —t;) —o(r*z — t))? < B2®(t),

2. B2®(t*) > Q(e).

Define Bi,1 = (1 — 1/C)B; for some universal constant C > 0. If (r*)?sin” §; < B23%,0< B <
1/10, then the update w''*Y) = projga— (W — p;G;) satisfies (r*)?sin® 0,41 < B2, 32, where
1 is a small constant and G is an estimation of E G; with O(d/3?) samples.
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Proof of Lemma C.6. Write w* = aw® + bu, where a,b > 0,02 +b% =1, u € S 1 o L @,
Since sin6; < 1/¢;, |t; — t*| < 1/log(R?/e) and |r; — r*| < r*/polylog(R?/¢), by Lemma 3.5

and Lemma B.10, we know that with O(d) samples of G;, we have HG‘z —EG;|| < 5B;/1000. We
consider two cases for (r*)?sin? 6;. In the first case, we assume that 32B?/2 < (r*)?sin®6; <
(32B?%. By Lemma 3.4, we know that HG‘Z — EGlH < B|EG;| /Cy, for some large enough

constant C; > 0. By Lemma 2.5, we know that there is a small constant ¢ > 0 such that
sinf;41 < (1 — ¢2) sin 6;, which implies that (r*)? sin? 0., < B?B?, .

In the second case, we have (r*)?sin? ; < 32 B? /2. Notice that

—(i+1) _

2(sin( W

") —in(5) = |

Then we have

< Hw(m-l) &t

< H’Lf}(i) + Miéi — @

— Hw(l) —w*

0; 0; ., 0; . 0;
BBiy1 — r* sin( 2“) = BB —r7sin(5) — r*(sm(T“) —sin())

> Bi+1ﬁ—ﬁBi/2 —r* /Jsz >0

Thus, in both cases, we have (r*)?2 sin? 01 < ﬂQBf_H. O

We discuss the implication of Lemma C.6 before providing the details for updating the pa-
rameters (r,t). In our application, we will choose 3 = 1/polylog(R?/¢). As we discussed
in Section 3, we have initial parameters rg,to such that |rg — r*| < r*/polylog(R?/¢) and
[to — t*| < 1/polylog(R?/¢). This implies that

E  (0(roz —to) —o(r*z —t))?

z~N(0,1)
<2 E oz 1)+ E ()2 (o(z — &) — oz — )
<@ B (o-r)ez=0)+ B 0")0(:~E) -z~ 1)

<O((ro — r*)?V(#) + (r*)?(fo — )*® (")) < (r*)®(t*) /polylog(R?/e).

If ¢* is large enough such that for § > 1/polylog(R?/e), (r*)?sin§?®(t*) < Ce, then by
Lemma C.6, starting from w(®) and updating w(®) at most loglog(R?/¢) steps, we obtain a hy-

pothesis with error O(e). Thus, in the rest of the section, we will assume that w(®) satisfies
sin fy < 1/polylog(R?/e).

C.5 Omitted Details in (7, t) Updates

Here we provide the details for updating the parameters (r,t). For a given ReLU activation
h(ri, w®, t;), we define the following random variables:

U = (h(r, w® 1) — ) (wD - z), Ff := —(h(ri,w?,t;) — h*),
and denote by U;, F;, their noisy version, namely
Ui := (h(ris, w®,t;) —y)(w® - 2), F; i= —(h(ry, w D, t;) —y) .
Here,  ~ N(0,1) |,y 057, -
When the direction w is fixed, we will also use U (r, t), F'(r, t) defined as follows for convenience:
U(r,t) := (h(r,w,t) —y)(w - x), F(r,t) := —(h(r,w,t) — y).

We give quantitative characterizations for these random variables. We write w* = aw® + bu,
where a,b > 0,a> + 0% = 1, v € S* 1,4 L w®». We furthermore assume that the parameters
h(ri, w®, t;) are close to (r*,w*,t*). That is to say 6; := (w*, w®) < O(1/(t*)?), |r; — r*| <
r* /polylog(R?/e), |t; — t*| < 1/polylog(R?/e).
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Evaluation of EU;" and E F;* We first evaluate the expectation of U*. To do this, we first expand
h(rs,w®,t;) — h* as follows

h(r;, w(i),ti) —h* = h(ri,w(i),ti) — h(r*,w(i)7t*) + h(r*,w(i),t*) — h*.

Since
EU; = A]’E%O I)(h(ri, wD 1) — ) (w® - 2) 1 {w® -z > 5}/ 8(E)
= Jﬁo I)(h(n-,w(i),ti) — h(r*, w® ) + b, w® ) — ) (w® - 2)1H{w® -z > 5}/ 8(E),

we evaluate the two components separately. For the first term, we have

]3%0 I)(h(m, wD ) — h(r*, w® ) (w2 H{w® -2 > 5}/ B(E)

= ZNA][E‘(,O,I) (o(riz —t;) —o(r*z — %)) 21{z > #; }/®(t;)

We next consider the second term. By Fact A.5, we have

E  (h(r*,w® ) — p*)(w® - 2)1{wD -z > #;} /(i
mNN(OJ)( (r*,wt, %) = h*) (™ - 2)I{w™ - 2 > 4}/ (t:)

=(r"/e(t")) z~]\17520,1) (0(z —t*) = Tho(z — %)) 21{z > t;}

1 P _ _ 1 olz — t* _
= (/o)) E (/ dTS"(”ds> oz — )z = (r*/@(t*))/ E MU'(Z —F)zds

z~N(0,1) ds z~N(0,1) ds

=(r*/®(t%)) / E 1LTScr(z —t")(z0'(z — t;))ds = (r*/@(f*))/ E 1(LTSa(z — ) (20" (z — 1;))'ds

z~N(0,1) S z~N(0,1) S

—0*/8(F) [ B, Tle =) (0~ )+ 20(z ~ ) ds

0

=(r*/®(t")) / sins B Tesso'(z =) (0'(z — 1) +26(2 — 1;)) ds.
0 ZNN(O,l)

‘We notice that

E  Tepsso'(z—1)d' (2 — 1)

z~N(0,1)
_ E Tooss "o~ Vo (5 — ) — E Toos s "y F* "y 7Y — o (5 — f

B Tt 0 F) B Tz )0 1)~ (o )
_ / ]2 ’ T* / T ’ 7Y 10, 1\|[|2
_ZNJ\}I?Eo,l) HTMU (z—t )H2 — ZNJ\:TE(O,I)TCOSSU (z—t)o'(z—t)—0d'(z—1)) = @(HT\/@a (z=1)|15);

when sins < 1/t* and |¢; — t*| < O(log(R/€)). This implies

9
*JD(T* i E  Toosso' (2 — 1) (0 (2 — §;))) ds = O((r* JO(F )2 ||T (2 —)|P).
(/2@ [sins B T (c — ) 0/ = 1) ds = O [BENR [T zgo’(c — 1))
On the other hand,
z~1\17520,1) Teos 50 (2 — 1) 28(2 — ;) = Teos 50’ (t; — t)tY(t) = 5~E(I£),1)(COS st; +sinsB —t° > 0)6;9(L;).

This implies that

0
* /Pt i E Toss0'(z—19)26(2z—t;)d
(r* ] ®( ))/O smsZNN(O,l) o'(z )20(z )ds

0

=r* sins Pr (cosst; +sinsB —t* > 0)t;¢(t;)ds

[ sins P 8 (@)
SO(ro*t(8:)/®(t:)) = O(r*b).

Putting everything together, we get

BUf = B (ol = 1) = o(r'z = 7)) 21{z > Fi}/2(E) + er°
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for some suitable constant ¢ > 0.

We next evaluate E I7* in a similar way.

EF} = w?fo I)(h(ri,w(i),ti) — ) 1{w® -z > £}/ B(H)
— [343(0 I)(h(ri, wD 1) — h(r*, wD ) + b, wD ) = B 1{wD -z > £}/ (E)
= ZNA][E()O,I) (o(riz —t;) —o(r*z2 — %)) /®(&;) + le\]fEEOJ)(h(r*, w® %) — B 1L{wD -z > 1}/ 8(H)

For the second component in E F;*, we have

E  (h(r*, w® ") — b)) 1 {w® -z > ;}/D(£;)

x~N(0,I)
=(r"/e(t")) B (0(z — ) — Tho(z — £*)) 1{z > &}
~rjoen g ([0 i =gy [ g, B g

1 _

1 1
=(r*/®(t")) / E 1LTS(r(z —t) (o' (z —1;))ds = (r*/(I)(f*))/ E (LTso(2 — ) (o' (2 — 1;))'ds

2~N(0,1) S 2~N(0,1) S

:(r*/(ﬁ(t_*))/ B Too'(z— ) (0(z — &) ds

z~N(0,1)
0
- (r*/cb(t‘*))/o sins B Towso' (2 — ) (8(2 — 1)) ds < O((r* /B(F*)) b*0(E:)) < O(+*b)

2~N(0,1)

This gives E F;' = E,_n(o,1) (0(riz — t;) — o(r*z — ¢*)) 1{w® - & > ;}/®(%;) + cbr* for some
suitably small constant c.

As a summary, we have the following:
Proposition C.7. There exist small constants c1,co > 0 such that,

EU = 1\]/%0 N (o(riz —t;) —o(r*z — %)) 21{z > t;}/P(t;) + 17"
EFf= E (o(riz—t;) —o(rz —t)) T{w® -z > ;}/®(L;) + cbr*.

z~N(0,I)

Evaluation for Noise Terms We next evaluate the noise terms. For the noise term in U;, we have

UM = — h* (@ . (@ . I z.

B U= | B = h) @ 2w e > 0)/e()
< Ch(p))2 () . FV (a2 /P (T
Mwﬁm@@ h*(2)) %m;:(()’[)n{w 2> i} (@ - w)2/D ()

/O(t:) = Ve/tib(t:) + @(t:) /@ (t).

Here, in the last equation, we use the fact that B, _y0,1) 2°1(z > &;) = t;9(;) + ®(t;).

< ﬁ\/ E 221(z>1)

2~N(0,1)

Similarly, for the noise term in F', we have

E(F,—F)|=| E — ) 1w x> E) /(G

E( i)l %N(O’D(y ) L(w'™ -2 > 1;)/O(t:)
< _ b 2 (@) . f. )
< ¢w~1§(0’1)<y<x> h()) %IN;:W)Mw © > 13} /0 (1)

[O(t:) = Ve O(t:)/ @ (t:).

< E 1 t;
o \ﬁ\/ZNN(O,l) (z>4)

As a summary, we have established the following:
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Proposition C.8.

|E(U; — U)| < Vetw(t) + ®(t;)/P(t;)
[E(F; — F]')| < Ve /O(t;)/O(t;).

We remark that when t; is close to t*, the noise rate of U; is larger than that of F; by a factor of
t*. This is one of the central reasons why we need a small step size to update (r, ), and can only
guarantee that (77, tr) is O(epolylog(R?/€) /®(*)) close to (r*, t*) with gradient descent only.

Evaluation for Variance Finally, we examine the variance of U; and F};. We start with U;. Notice
that EU? < 2E(U;)? + 2E(U; — U;)2.

Let M > 0 be a threshold such that E, 0,1y 2°1{|z| > M} < €/R. Notice that if we set y’ =
sign(y) min{|y| , ; M}, then we will only introduce at most € error, since |r; — 7*| < r*/log(R/e).
So, we can, without loss of generality, assume that |y| < M. In particular, for the ReLU activation,
M < O(y/log(R/¢)). Based on this, we obtain that:

BU; U= B (o) =0 @) @ w1 o> G w?) < M}/2 )
poy. W) = W (2))” (@ - 0P 1{w? -z > E1 (- 0®) > M}/e(5)
<eM?/O(t) +4M?  E  (z-w)*T{w-z > t}1{(z-w) > M}/®(t;)

x~N(0,1)
< eM?/®(E;) + 4eM? ) (T;) = O(e/®(1:)).
We next consider the variance of E(U;)?. We have
E{U/)? <2 ]\][5%0 I)(h(ri,w(i),ti) — h(r*, w® N2 (w® - 2)21{w® -z >}/ B(H)
+2 E (0w ) — B2 - 2)? 1 {w® x> 1}/ D(E)
x~N(0,I)
We separately evaluate the two terms above. First, we have

E (h(ri,w(i),ti) — h(r*,w(i)7t*))2(w(i) ~x)2]l{w(i) sz >4 /()
x~N(0,I)

= ZNJ\][EEO’I)(TZ'O'(Z — 1) —rro(z —t")2 22 {2 > £, }/O(F;)

For the second term, recall that we decompose w* = aw® + bu. Notice that

2

<a(w(i) cx—t)—o(w" -z — f*))2 < ((w(i) —w*)- x>2 = ((1 —a)(w® - z) + b(u - x)))
<2(1 —a)?(w - 2)? + 20%(u - z)?

This implies
1:~N(0,I)(h(r*7w(i)7t*) = W)@ 2w 2 >}/ B(F)
T N (OLD) (200 = (@ - @) + 22 (- 2)?) (0 21w 2 > LH)/D(E)
= B Q=2 +20%()7) (2)"1{z > 1} (r")?/ @ (F:)
<O(__B 6> B} RE) + B PPz > B0/ 2(0)

We evaluate F' in a similar way. First, we have

E(F — F)? < ¢/0(t;).
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Next, we have
E(Fz*)2 <2 J\]?Eo I)(h(ri,w(i),ti) — h(r*,w(i),t*))%{w(i) sz >4}/ P(t;)
2 E  (h(r*,w?, ") — B 1{w® -z > £} /(4
+2 B (00 < 1) {2 > /()
The first term can be evaluated as

E  (h(r;,wD t;) — h(r*, w®, )21 {w® . 2 > §;}/D(4;
mNN(O,I)( (T’w ’ ) (r,w ) )) {w T }/ ()

:zwz\ﬁo,l)(ria(z — 1) —ro(z — t)*1{z > £;}/O(£;)

For the second term, we have
E  (h(r*,w® ") — b1 {w® -2 > §;}/0()

o~N(0,I)
:xNJ\IIEEO,I) (2(1 —a)?(w® - ) + 20%(u - ;C)2) uw® -z > £}(*)2/0(E)
= B U=’ 4 27(9)%) ()P > BH)* ()
SO(ZNJ\]IE(OJ) b422]l{2 > fz}(r*)Q/(I)(t—Z) + ZNA];-Z\OJ) b2]l{z > t_z}(T*)2/<I>(t_Z)) .

As a summary, we have established:
Proposition C.9.

EU?<O (zNJ\]rEgOJ)(mU(Z — 1) —rro(z —t9)222 {2 > £}/ B(8) + B2 (r*)? + e/CID(ti))

EF?<0 (z~1\]/%0,1)(ria(z — 1) —rro(z —t9)* {2 > £} /O (E;) + b2 (r*)? + e/@(h)) .

C.5.1 Progress on (r,¢) Updates

In this section, we describe how to update the parameters (r, t) so that we are able to make the term
E. .~ (o(riz —t;) —o(r*z — #*))? stably drop every time we choose to update the parameters.
For convenience, in this section, we define the following 2-dimensional vector:

T
g = <z~]\][520’1) ((riz —t;) — (rz — ") 21{z > "}, — z~]\]f%o,1) ((riz —t;) — (r'z — %)) 1{z > t*})

= ((rs = 1)8(E) — (6 — £)YO(E ), —(ri — P WE(E) + (8 — )B(E)) T

and function

Z(r,t) = ZN;:(OJ) ((rz—1t) — (r*z —t*))* 1(z > )
=(r —r*)25(F) 4 (t — t")D(F*) — 2(r — r*)(t — t*)(F")
W(r,t) := z~1\];go,1) (o(rz—1t) —o(r*z—t"))" .

To simplify the notation, we define

oo (8) —u(E)
T\ w@) @),
and define A(r,t) = ((r — r*),(t — t*))T. By definition, Z(r,t) = ATQA. In particular, the
largest eigenvalue of @ is O((¢*)?®(#*)), while the smallest eigenvalue of Q is Q(®(*))/(t*)4).
Thus, the ratio of the largest and smallest eigenvalues of Q is at most log®(R?/¢). Furthermore,
we want to mention that, when * becomes large, () becomes ill-conditioned; this is the reason
why in Algorithm 4, we update (r;,¢;) with a much smaller rate of 1/polylog(R?/¢) and the
gradient descent stage can only guarantee that (r7, tr) is epolylog(R?/€) /®(*) close to the optimal
parameters (r*, t*).

We remark that g(*) is exactly the gradient of Z at point (7, ¢;). The motivation of using this notation
is that when (r,t) is close to (r*,t*), Z(r,t) and W (r,t), the quantities we want to control, are
different by a negligible factor. We give the following proposition.
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Proposition C.10. Suppose t* < +/log(R?/¢) and r* < R, given a pair of parameter (r,t) such
that |r — r*| < r* /polylog(R?/e€) and |t — t*| < 1/polylog(R?/¢), we have

(W (r,t) = Z(r,t)] = o(Z(r, 1)).

Proof. Since W (r,t) and Z(r,t) are only different at region {z | |1(z > t; — 1(z > ¢*)| > 0},
when (r, t) are close to (r*,¢*), we have

W (r,t)— Z(r,t)] < ((r — )2+ (t — t*)2) P:r(z e{z||1(z>t;—1(z> )] >0})
< ((r=r*)* 4 (t — %)) ®(f*) /polylog(R? /€) < Z(r,t)/polylog(R*/e).

Here, in the last inequality, we use the fact that the smallest eigenvalue of Q is Q(®(¢*)/(£*")) and
thus Z(r,t) > Q(A(r,t)? /polylog(R?/¢)) O

Such a proposition can also be generalized to the gradient of F' and W. We next give the following
proposition.

Proposition C.11. Suppose t* < +/log(R?/¢) and r* < R, given a pair of parameter (r,t) such
that |r — r*| < r* /polylog(R?/€) and |t — t*| < 1/polylog(R?/¢), we have

IVZ(r,t) = VW (r, )| < o(| A(r, )| & (£))-

Proof of Proposition C.11. We notice that

Wt =2 E ) —o(rr—t*) (2> T
VW (r,t) ZNN(OJ)(O'(TZ )—o(r*z ) 21(z > ?)

VW (r,t) = _22~J\]7520,1) (o(rz—t) —o(r'z—t"))1(z > t)

Since W (r,¢) and Z(r, ) are only different at region {z | |[1(z > ; — 1(z > ¢*)| > 0}, when (r, t)
are close to (r*,t*), when

IVZ(r,t) — VW (r, t)||2 ((r—r*)+ (t —t)H? I;r(z c{z|(z >t —1(z > t")] > 0})?

<
< A%®(f)?/polylog(R? /) .
O

Before formally presenting the analysis for updating the parameters (r, t), we present the following
standard gradient descent analysis for analyzing quadratic minimization.

Proposition C.12. Let Q € R?*? be a positive definite matrix and let L, 11 be the largest eigenvalue
and smallest eigenvalue of Q. For x € R?, define F(z) = ' Qx. For0 < ¢ < (u/L)/C, for a
large constant C', given g’ € R? such that ||g/ — VF|| < ¢||[VF|, let 0 < n < O(1/L), then the
update ©' = x — pg’ satisfies F(x') < (1 — O(un))F(x) and ||2'|| < (1 = O(np)) [|z]].

Proof of Proposition C.12. The proof of Proposition C.12 follows the standard gradient descent
analysis for L smooth functions that satisfy the Polyak-Lojasiewicz condition with parameter p. We
have

IVE|* > 2uF (x)
F(z') < F(z) —nVF(z)- ¢ + Li* |g']° /2.
Since
VE(z)-g > [[VF()|? ~ [VF(z)] - ¢ — VF ()| > (1 - ¢)[|[VF ()]
and

lg'll < (1 + ) IVF ()],
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we have

F(z') < F(z) = n(1 = o)[[VF()|I* + LTU(lJrC) IVF ()|

< [1—%( 1-9-0 >2)]F

This implies that by choosing n = O(1/L), we have F(z') < (1 — O(un))F(x).
We next show that the update also contracts the parameter distance.

'l = llz = ng'll =z = nVEF(z) + n(VF(z) = ¢")|| < |z = nVEF ()| + n||[VF(z) - 'l
<l =nF (@)l +ne|[F@)| < (1 =np) [zl + enL[lz]| < (1= O(nu)) ||z
Here, the last inequality follows the fact that ¢ < (u/L)/C. O

In our setting, we have that the parameters p, L for Q are Q(®(#*)/(¢*)*) and O((£*)2®(¢*)). Thus,
after zooming in to the region 1(z > ), the rescaled parameters become p = Q(1/(¢*)*) and
L = O((t*)?). By choosing the step size ;1 = 1/polylog(R? /), we are able to drop Z(r,t), and
thus Z(r,t), by a factor of 1 — 1/polylog(R?/e) in each round of update. Furthermore, after the
update (r, t), is still close to (r*,¢*). So far, we have already stated all ingredients for analyzing the
update for parameters (r,t). We present the following lemma to conclude this section.

Lemma C.13. Consider the problem of agnostic ReLU regression with queries. Let h(r;, w®, t;) bea
ReLU activation function. Write w* = aw® + bu, where a,b > 0,a?> +b*> =1, u € S, u 1 w®.
Suppose that |t; —t*| < 1/polylog(R?/¢), b < 1/t; and |r; — r*| < r*/polylog(R?/¢). Let
B; > 0 and define B; 11 = (1 — 1/C)B; for some universal constant C. Suppose B;, B; 11 satisfy
the following properties:

1. (r*)?sin®0; < BZ,,,
2. B2o(t*) > Qfe),
3. W(ri,t;) < B2®(t*)polylog(R? /e).

If W(ri, t;) > B2, ®(t*)polylog(R?/¢), then there is an algorithm that makes polylog(R? /¢)
queries, runs in polylog(R? /) time, and outputs a pair of (i1, ti11) such that W (riy1,tip1) <
B? ,®(t*)polylog(R?/e).

Proof of Lemma C.13. For a parameter (r,t), if W(r,t) > B2 ®(t*)polylog(R?/e), by
Proposition C.10, it must be the case that Z(r,t) > B2 _,®(t*)polylog(R?/e), which im-
plies that HVZ(r t)||2 > B2 ,®(t*)polylog(R?/e). By Proposition C.11, this implies that
VW (r,t)|> > B2 ,®(#)polylog(R?/e). On the other hand, by Proposition C.7, we know
that when (r*)?sin®6; < B2, ., [(EU(r,t),EF(r,t)) — VW (r,t)|| < o(|VW (r,t)||). This
implies that |[(EU(r,t),E F(r,t)) —VZ(r,t)/®)] < o(|VZ(r,t)/®(t*)]]). By Proposi-
tion C.9, with polylog(R?/e) queries, we are able to estimate (EU(r,t),E F(r,t)) with er-
ror |[(EU(r,t), E F(r,t))|| /polylog(R?/e); and thus this is different from VZ(r,t)/®(t*) by
IVZ(r,t)/®(t*)| /polylog(R?/€). By Proposition C.12, we know that by running gradi-
ent descent with step size O(1/polylog(R?/e)), we are able to drop Z(r,t) be a factor of
(1 — 1/polylog(R?/¢)) in each round; and thus after polylog(R?/€) rounds of iterations, we
have Z(rit1,tiv1) < B2 ,®(t*)polylog(R?/e). Therefore, by Proposition C.10, we have
W (ris1,tiv1) < B2, ®(t*)polylog(R? /e). O

C.6 Proof of Theorem 3.1
In this section, we give the proof of Theorem 3.1.
Proof of Theorem 3.1. We first notice that p < ¢/R?, otherwise the 0 function has error O(¢). Thus,

by Lemma 3.2, with min{1/p, R?/e} queries, we obtain a warm start w(®) such that 8y < O(1/*).
Furthermore, by the construction of the grid (r, t), if we randomly chose a parameter (7, t) from
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the grid, with a non-trivial probability(1/polylog(R?/¢)), we have |rg — r*| < r* /polylog(R? /)
and |ty — t*| < 1/polylog(R?/e).

With the pair of (rq, w® to), we run Algorithm 4. We prove by induction that in each round of the
update W (r;, t;) < B2®(#*)polylog(R?/e) and (r*)?sin®0; < BZ, ;. Notice that for i = 0 this
holds automatically by the property of (rg, w(o)), tp as a warm start.

Now suppose that this holds in the ith round. We will show this holds for the ¢ + 1th round.
By induction, we have (7*)%sin”6;,; < B?H. By Proposition C.7 and Proposition C.11, we
must have |[(EU(r;,t;),E F(ri,t;)) — VE(ri, t;)/®)] < o(||[VZ(r,t)/®(t*)|). By Propo-
sition C.9, with polylog(R?/¢) samples, we are able to estimate (EU (r;,t;), E F(r;,t;)) up to
error ||(EU(r;,t;), E F(ri,t;))|| /polylog(R?/e). Since Z(r,t)/®(t*) > HVZ/@(E*)HZ/(E*V,
this implies if W (r;,t;) > B:,; ®(¢*)polylog(R?/¢), we are able to verify this by looking at the
length of the gradient; and thus by Lemma C.13, after making polylog(R?/¢) queries, we get
W (riy1,tiv1) < B2 ,®(t*)polylog(R? /). After this by Lemma C.6, by making O(d) queries, we
have (r*)?0%_, < BZ,,.

Now after T = O(log(R?/e)) rounds, we have (r*)202®(t*) < O(e), while
W (rp,tr) < O(epolylog(R2/e). By Proposition C.10, this implies ||A(rp,t7)|* ®(F) <
Z(rp, tr)polylog(R2/¢) < O(epolylog(R2/¢)). Notice that if a pair of (r, ¢) satisfies || A(r, £)]|* <
€/ (®(t;)polylog(R?/¢)), then W (r,t) < O(e). This implies that if we consider the ball B C R? cen-
tered at (rr, t7) with radius O(/epolylog(R2 /€) /®(#*)), then (r*,*) € B. In particular, if we grid
B with anet N of size polylog(R?/e), there must be some (1, ') thatis y/€/(®(t;)polylog(R2/e))
close to (r',t'). By uniformly sampling from the grid, with probability at least 1/polylog(R?/¢), we
get such (', ') with W (r/,t') < O(e). By Lemma 3.3, we know that h(r’, w(T), ') has noiseless
error at most O(¢), and thus err(h(r’, w(™),#')) = O(¢). Furthermore, the total number of queries
we use is O5(min{1/p, R?/e} + d - polylog(R?/e)). We remark that the current algorithm has a
probability of success of 1/polylog(R?/¢). Thus, by running it polylog(R?/¢) times, we get a list of
polylog(R?/¢) hypothesis, one of which has error O(¢). By doing a hypothesis selection procedure
using Lemma 2.11, we are able to select a hypothesis with O(¢) error with high probability, which
will only cost another polylog(R?/¢) queries. O

D Omitted Proofs from Section 4

D.1 Proof of Theorem 4.1

For convenience, we restate the theorem below.

Theorem D.1. Consider the problem of agnostic ReLU regression with queries with a restriction
that the optimal ReLU satisfies |W*|| < 1 and has bias at least p. Any learning algorithm that
outputs a hypothesis with error less than O(p/ log?(p)) with probability 1/3, must make at least
Q(1/p'=2¢M) + d) queries. Furthermore, this holds even if opt < 2=y,

Proof. We break down the proof into two parts. First, we show a lower bound of Q(l /p). Consider
two hypotheses h; () = o(w* - x — t*), where w* is drawn uniformly from S?~! and hy(z) = 0.
Notice that

ooty P1(2) = ha(2))? = V(") = (t")°@(¢") — t*p(t") = (t")/(t)? = Q(p)-
Thus, any learning algorithm that can learn a hypothesis with error O(p) can distinguish whether
the target hypothesis is hy or ho. We construct adversarial label noise as follows, when h; is the
underlying hypothesis. For every example such that ||z||> > d + A, where A = d*, 0 < a < 1, and

d large enough, the adversary changes its label by y(x) = 0. We first show that the noise level is
small. We have

E h _ 2 < E h2 1 * > t*7 2 > d A
INN(OJ)( 1(7) —y) S orton (@) 1{w* -z lz|l + A}

< O(pexp(—Q(d**™ 1)),

37



where in the last inequality, we use the tail bound for X2—distribution. Here, we choose v = 5/8 to
make 2o — 1 = 1/4.

This implies that by querying examples with norm larger than v/d + A, a learner will get no informa-
tion. Now we consider a deterministic learner that makes r queries over the ball with radius v/d + A.
Since w* is drawn uniformly from the unit sphere, we know that for each realization of w*, only
examples in R := {x | w* - = > t*} have non-zero labels. This implies that the number of queries
that fall into this region is

~ 1 (t*)2 B .
P >t < O(r= N GOV o(1)
i b (T 2 ) S O ep(=5a— ) = Op ),

for a € (0,1). Thus, unless r > Q(1/p'~°M), no query will have a non-zero response, and thus it is
impossible to distinguish whether the ground truth is h; or hs.

We next establish the lower bound on d. We show that this even holds for learning a homogeneous
ReLU with error £2(1) in the realizable setting. We consider an even simpler model in the realizable
setting, where w* € S9! and t* = 0. Furthermore, for every query = made by the learner, we
additionally provide the information w* - . Denote by L the subspace spanned by z(1) ... ("),
the queries made by the learner. We assume that r < d/log(d). Denote by w} = proj; (w*). Since
w* ~ S%1 given wj, we know that the orthogonal component w7, is a random vector drawn

from the ball in L with radius /1 — ||lw} ||°. Let D be the distribution of w} .. Now for any fixed
hypothesis h, we consider the expected error of » when w}, ~ D. We have

_ * * 2 — _ * * 2
wr B gc~N(0,I)<h(x) o(w} -z +wj.)) w~]\]f%0 N wzf]ND(h(:v) o(wy - x+wjL))
> E V w? 7 T
2 B ary+  ~p(o(wi - r+wp. - T))

= z~1\];](0,1) VarszND(a(wz “TpFwiL-TpL)) .

*

To simplify the notation, we denote by T' = wj - x, the threshold of the ReLU, o(wy - xp +
wj}, - 1) Notice that since r < d/log(d), (d)
and |T| < 1/log(1/d). Denote by D’ the uniform distribution over the ball in LL with radius

7“—H\/1— lwy || ‘

VarszND(U(T +wj. -xpr)) = Vargop (o(T + €1 - z)),

|2+ For every fixed z ., we have

where e; is the first standard basis vector in L. Since L has dimension d(1 — O(1/log(d))), we
know that when ||z . || > Q(+/d), and thus r > Q(v/d), Var,p/ (o(T+e;-x)) > Q(1). Since z 1
and z 1, are independent, we know that with probability at least 2/3, ||z, || > ©(+/d). Thus, for every
learning algorithm, if it makes fewer than d/ log(d) queries, with probability at least 2/3, the expected
error of the output hypothesis is at least Ev» | ~p B (o,1) (h(z)—o(w; -z+wi,))? >Q1). O

D.2 Proof of Theorem 4.2

We restate the theorem below.

Theorem D.2. For any active learning algorithm A, there is an activation function h* that labels
S with bias p such that if A makes less than O(d/(plog(m))) label queries over S, a set of m i.i.d.
points drawn from N (0, I), then with probability at least 2/3 the hypothesis h output by A has error
more than O(p) with respect to h*.

To begin with, we establish the following lemma that reduces the learning problem to a slightly easier
problem of finding examples with non-zero labels from a pool of unlabeled examples.

Lemma D.3. Suppose there is an active learning algorithm that can make r label queries over a
pool S of m > poly(d/p) examples drawn from N (0, I) and learn any ReLU activation function

h*(x) = o(w* - & — t*) with bias p up to error O(p) with probability at least 2/3. Then there is

38



an algorithm such that given a pool of 2m random examples S drawn from the standard Gaussian
distribution with hidden labels by some ReLU activation function h*(x) = o(w* - x — t*) with bias
p, it makes r + O(d) queries and finds d examples with non-zero labels. from S with probability 1/2.

Proof of Lemma D.3. Let A be such a learning algorithm. We select a random set of m exam-
ples Sy and give it to A. We know that with probability 1/2, we learn a hypothesis h such that
E.no,n) (M(z) — h*(z))* < O(p). We first show that if z ~ N (0, ), then with probability at
least Q(p), h(z) > 1/(2t). This is because otherwise

R ANUCR h*(2))? L{h(z) < 1/(2t), h*(z) > 1/}

>0(1/%) | Pr (h(r) < 1/(20),h*(x) > 1/1) = Q(p).

On the other hand, if z ~ N(0, ) and h(z) > (1/2t), then with probability at least 1/2, h*(z) > 0.
Suppose this is not correct, we have
E (h(z) - h*(2))" 1{h(z) > 1/(2t), h*(z) < 0}
@~N(0,I)

>0(1/2) Pr | (hle) > 1/, (@) < 0) = Ofp).
T~ )
Since m is at least poly(d, 1/p), we know that with enough high probability, at least 2(d) examples
will satisfy h(z) > 1/(2t) and at least a constant fraction of these examples will satisfy h*(z) > 0.
Thus, given such a h with probability at least 3/4, we can find d examples with non-zero label in S

by randomly querying O(d) examples with prediction h(z) > 1/(2t). O
Based on this, we can give the proof of Theorem 4.2.

Proof of Theorem 4.2. Consider the problem where an algorithm wants to find k£ examples with
non-zero labels from m unlabeled examples by making 7 queries. By Lemma D.3, it is sufficient for
us to prove the hardness of such a problem by finding suitable parameters k, .

Consider any deterministic learning algorithm 4. Given a pool of m unlabeled examples, we
describe A in the following way. For every w*, the implementation of A can be described as a
path P = ((z),yW), ..., (z(™,y()), with length at most r. In particular, a path, along which A
successfully finds k£ examples with non-zero, can be uniquely represented as the indices 7; < - -+ < i,
and the corresponding label (y(il), R y(i’f)). Next, we consider a fixed tuple of £ indices 41, .. ., %
and denote by S, the set of all (z(*),3()) . (2(*) (%)) that make algorithm A succeed at
positions i; < --- < i. By choosing w* ~ S?! uniformly, we will show that the probability
of S, is very small. Notice that for any (z(*), y(1)), . . (2() y()) € S.. it corresponds to a
unique event (1) q(1)) .. (z(%) qUk)) where ¢(%) = w* - (%) for j € [k], since y;; > 0 and
ij = t* + yi;. We denote the marginal density on this event as f((x(t), (1)) ... (x(%) ¢(ix))),
Notice that Pr(S.) = f‘Zil,';sz e P gl L (208 q0)). So, it is sufficient to upper
bound this integral.

Denote by L the subspace spanned by {z(") ... z(%)}. We consider a basis {b1,...,by} of

L as follows. by = ™)/ ||| and b; = proj,,  a()/ ‘ projp, 7|, where L; , =

span{z), ... x(i-1)} We know that there is a unique wy, := proj; (w*) such that wy, - z(%) =
q%) for j € [k]. This implies that events (z(*1), (1)), .. (2(*) y(*)) can be precisely described
as a k-dimensional vector v(wy,) := (wg, - by, ..., wg, - bg). Denote by Lo = span(ey, ..., ex). We
have
F(@™, "), (@), ¢"))) = pproj (w*) = wr) = p(projy, (w*) = v(wr)) ,,

where p(proj; (w*) = wy) is the density function of the event that proj; (w*) = wr, w* ~
S?=1 Consider the set S,, of all possible v(wy) such that wj, corresponds to a realization
(2, q)), ... (2(*), qUix))). We notice that, given any v(wy) € S,,, we can uniquely recover
the corresponding (z(11), ¢(#)), ... (x(*) ¢()) € S, via A. This implies

Pr(s)= [ (g @) = [ ploroiy, () = v(ws) = Pr(S,).
Qi s qig, >t* Suw w
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To upper bound Pr(S,,), it is sufficient to upper bound the probability of a super-set of S,,. Since
w* - 204) = ¢l > * for j € [k], we know that

vi= (w2 w7
satisfies ||v||* = > jelk] (q(%3))% > E(¢*)2. This implies that, for every realization, the square of the
norm of the projection of w* onto the subspace, |lwy||?, is
B:=(w")"TAT(AAT) T Aw* = v (AAT)Tw > |u])? / [|AAT],
*\2 T
= k(7)*/ 44T, .
where A € R¥*4 is the matrix with row vectors (1), ..., (),
We next make use of the following structural lemma from [DKM24].

Lemma D4. Let S C R? be a set of m examples drawn i.i.d. from N(0,1). Let t* > C > 0 for
a sufficiently large constant C and k = O(d/log(m)(t*)*). Then, with probability at least 2/3,
for every k-tuple of examples {x1,..., 1} C S, ||[AAT — al]”2 < d/(t*)?, where A € RF*? be g
matrix with row vectors x1, ..., T.

That is to say, we are able to bound HAAT H2 by d(1 + O(1/(t*)?)) and thus every vector v(wr,)
has squared norm at least (k(t*)2/d(1 + O(1/(¢*)?))). Since w* is uniformly chosen from the unit
sphere, by Lemma B.1 in [KMT24c], the square norm of w* projected onto a fixed k-dimensional

subspace is a random variable drawn from a Beta distribution B (g, d%k) By Lemma 2.2 in [DGO03],
We have

d(t* )2 d(t* )2

Pr ([, |* = k()2 /d(1 4+ O(1/(¢)%)) < exp (§<d<

(t)?
2

k
. (o«t*)exp(_ (1- o<1/<t*>2>>>)

(t)?

k
(02 exv-30) < Owios/m)*

This implies that by choosing k& = O(d/ log(m)(t*)*), for every k tuple of indices, the probability

of success for A is at most (O(plog(1/p)))". Since there are at most (1) such tuples, by the union
bound,

<;)O‘k < (%O(Plog(l/p)))k <2/3,

if r < O(k/plog(1/p)) = O(d/(plog(m)polylog(1/p)). This implies that if we make less
than r < O(k/plog(1/p)) = O(d/(plog(m)polylog(1/p)) queries, then it is hard to find
k= O(d/log(m)(t*)*). O
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paper’s contributions and scope?
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in the main body and supplementary material.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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* The proofs can either appear in the main paper or the supplemental material, but if
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* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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* The answer NA means that the paper does not include experiments.
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* The instructions should contain the exact command and environment needed to run to
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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results?

Answer: [NA]
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they were calculated and reference the corresponding figures or tables in the text.
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* The answer NA means that the paper does not include experiments.
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work is theoretical and does not use data or models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This work does not use any assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not use any assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs where used only for writing assistance such as correcting grammar
errors and typos

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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