
Fast Co-Training under Weak Dependence via Stream-Based Active

Learning

Ilias Diakonikolas
University of Wisconsin-Madison

ilias@cs.wisc.edu

Mingchen Ma
University of Wisconsin-Madison

mingchen@cs.wisc.edu

Lisheng Ren
University of Wisconsin-Madison

lren29@wisc.edu

Christos Tzamos
University of Athens and Archimedes AI

tzamos@wisc.edu

July 12, 2024

Abstract

Co-training is a classical semi-supervised learning method which only requires a small number
of labeled examples for learning, under reasonable assumptions. Despite extensive literature
on the topic, very few hypothesis classes are known to be provably efficiently learnable via
co-training, even under very strong distributional assumptions. In this work, we study the
co-training problem in the stream-based active learning model. We show that a range of natural
concept classes are efficiently learnable via co-training, in terms of both label efficiency and
computational efficiency.

We provide an efficient reduction of co-training under the standard assumption of weak
dependence, in the stream-based active model, to online classification. As a corollary, we obtain
efficient co-training algorithms with error independent label complexity for every concept class
class efficiently learnable in the mistake bound online model. Our framework also gives co-
training algorithms with label complexity Õ(d log(1/ϵ)) for any concept class with VC dimension
d, though in general this reduction is not computationally efficient. Finally, using additional
ideas from online learning, we design the first efficient co-training algorithms with label com-
plexity Õ(d2 log(1/ϵ)) for several concept classes, including unions of intervals and homogeneous
halfspaces.

1 Introduction

Supervised learning — the task of learning using a large pool of random labeled examples — is
a standard machine learning paradigm that has reached substantial maturity. Even in the most
basic binary classification setting, learning a hypothesis with 0-1 error ϵ requires at least Ω(1/ϵ)
labeled examples. In a number of modern machine learning applications, the scale of the problem is
usually very large, which makes it very costly to obtain enough labeled data to fulfill the training
requirements. The bottleneck caused by the scarcity of labeled data is especially pronounced in
applications such as webpage classification, spam detection, or training large language models,
where examples need to be labeled by human experts. As a result, several models and techniques
have been developed to learn with fewer labeled examples. These include label propagation [Yar95],
transductive learning [J+99], and active learning [Das05]. Here we focus on co-training [BM98], one
of the classical methods in the area of semi-supervised learning.

1

Co-training is a method used when every single example x can be partitioned into two views
x1, x2, such that each view can solely determine the label of x. The high-level idea of co-training
is that instead of trying to learn a single hypothesis h using labeled examples, one tries to find
two hypotheses h1 and h2 in each view that maximize their agreement with each other over a large
pool of unlabeled examples, and are also consistent with a small pool of labeled examples. The
framework of co-training has attracted substantial interest in both theory and application; see,
e.g., [DLM01, Abn02, KD11, BB10, LLL+14, PZ03, CS99, SLYO20, LWLC21].

The power of co-training in classification problems, according to [Abn02, BB10, BM17], is that
under suitable assumptions any pair of hypotheses (h1, h2) that has large agreement and a balanced
prediction over a pool of unlabeled examples must be close to either the target concept or its negation.
Given this observation, O(log(1/δ)) random labeled examples suffice to break the symmetry with
probability 1− δ. That is, information-theoretically the label complexity of co-training does not
depend on the accuracy parameter ϵ.

Despite its low label-complexity, known co-training approaches typically suffer from the perspec-
tive of computational efficiency. Specifically, even under very strong distributional assumptions,
very few concept classes are known to be efficiently learnable via co-training. Intuitively, this holds
because the agreement maximization method (mentioned above) is in general computationally
intractable. In fact, many concept classes that are efficiently learnable in the vanilla supervised
setting are not known to be efficiently learnable via co-training (with low label complexity).

The prototypical example illustrating this phenomenon is the class of halfspaces — one of the
most fundamental concept classes in machine learning. As pointed out in [BM17], although finding
a consistent halfspace is computationally easy, solving the agreement maximization problem for
halfspaces is NP-hard in general. Given this obstacle, co-training algorithms are usually designed
using heuristics (so that they are implementable in practice).

For the class of halfspaces, the first efficient co-training algorithm was given by [BM98] under
the conditional independence assumption, postulating that (x1, x2) are drawn independently given
the label. That work reduces the co-training problem to the problem of learning under random
classification noise [BFKV98]. As we will explain in Section 1.2, such an algorithm breaks down
immediately if we relax the conditional independence assumption to the more realistic λ-weak
dependence assumption [Abn02]. The latter assumption posits that, given the label, with probability
λ, x1, x2 are drawn independently; and with probability 1 − λ they are drawn in an arbitrarily
correlated way.

[BM17] gave the first efficient co-training algorithm in the weak dependence model for large
margin halfspaces under additional distributional assumptions. Notably, although they relaxed the
conditional independence assumption, [BM17] required several additional distributional assumptions
(on top of large margin). Their algorithm is based on convex programming and appears difficult to
extend to other hypothesis classes. In fact, whether the class of halfspaces is efficiently learnable (in
the distribution-free model) under the weak dependence assumption was posed as an open problem
in their work and remains open. This motivates the following question:

Is there a natural algorithmic template to design co-training algorithms that achieve both label
and computational efficiency for a broad class of concept classes?

Our key observation is that if we work in a slightly stronger learning model, where the labeled
examples are obtained via adaptive label queries, we can design efficient co-training algorithms for
a range of hypothesis classes (under the weak dependence assumption) with low label complexity.
Formally, we work in the standard stream-based active learning model [FSST97], defined below.

Definition 1.1. (Stream-Based Active Learning) A learning problem (X,H) contains X, the space
of examples, and H, the hypothesis class over X. Each h ∈ H is a Boolean function over X

2

that labels each x ∈ X by h(x) ∈ {±1}. Let h∗ be an unknown target hypothesis over X and
let D be an unknown distribution over X. A learner A receives a stream of unlabeled examples
{x(t)}mt=1 drawn i.i.d. from D. When x(t) arrives, A must make an irrevocable decision whether to
query (and observe) the true label h∗(x(t)) or not. After a single pass over {x(t)}mt=1, A outputs
a hypothesis ĥ. We say that A learns H if for all ϵ, δ > 0 and h∗ ∈ H with probability 1 − δ,
err(ĥ) := Prx∼D(ĥ ̸= h∗(x)) < ϵ.

The model of Definition 1.1 is considered simple and practical, as it captures a variety of
important real-world applications (e.g., recommendation systems and digital marketing).

Interestingly, a number of experimental works have studied co-training in the active learning
setting; see, e.g. [MMK00, MMK06, FAHS10]). In more detail, these papers focused on the pool-
based active model — a data access model that typically requires more memory and is stronger than
the streaming-based active model we study here (note that the streaming-based setting corresponds
to the pool-based setting with pool of size one). Despite this extensive interest, no provable results
were previously established in either of these models.

1.1 Our Contributions

Black-Box Reduction to Online Learning Classic co-training algorithms can be viewed as
making queries in the following way. They set up some budget L, query the first L examples in
the data stream, and do not make additional queries. With such a query strategy, every queried
example plays the same role in the learning process — because after seeing L labeled examples,
classic co-training algorithms will not make queries anymore. However, there are some examples
that can provide more information. Suppose that we have two hypotheses (h1, h2) and over some
example x = (x1, x2), h1(x1) ̸= h2(x2); then at least one of the hi makes a wrong prediction on x. If
we make a query on x and update the hi that makes a mistake, then hopefully hi will get closer to
the target hypothesis. On the other hand, mistake-bound online learning [Blu05] is a well-studied
field that designs prediction algorithms that minimize the total number of incorrect predictions over
a stream of examples (mistake-bound model). A natural idea is to use an online learning algorithm
as a subroutine to design co-training algorithms. This potentially provides us with a way to control
the number of queries while maintaining computational efficiency.

Building on this observation, in Theorem 3.2, we give a black-box reduction from the problem
of co-training with label queries (Definition 1.1) to the problem of online learning. Consider a
co-training problem (X,H) that satisfies λ-weak dependence. If the hypothesis class H can be
learned in the mistake-bound model by an online learner A with mistake bound M , then we can
use A to design a co-training algorithm that makes Õ(M/α) label queries — importantly, the label
complexity does not depend on the accuracy parameter ϵ — over a stream of Õ(poly(M, 1/α, 1/(λϵ)))
unlabeled examples, and with high probability learns a hypothesis with error at most ϵ. Here
α := min{Prx∼D(y(x) = 1),Prx∼D(y(x) = −1)}. In particular, the running time of the co-training
algorithm in each iteration is the same as that of the online learner A.

As a corollary, any hypothesis class that is known to be efficiently learnable in the mistake-
bound online learning model, can be efficiently learned via co-training with error independent label
complexity. In particular, for the class of γ-margin halfspaces, the perceptron algorithm implies a
fast halfspace co-training algorithm with only Õ(1/(γ2α)) label queries. In comparison, the prior
work [BM17] gives a co-training algorithm (without queries) for γ-margin halfspaces with additional
restrictions; namely, it requires homogeneity and zero-mean marginal distribution. Our algorithm
does not impose further assumptions on the marginal distribution and runs in linear time per
iteration.

3

Co-Training beyond Finite Mistake Bound The learnability of a hypothesis class in the
mistake-bound model is characterized by its Littlestone dimension [Lit88]. On the other hand,
many simple hypothesis classes, such as unions of intervals, have finite VC-dimension but infinite
Littlestone dimension. This suggests that in general we cannot hope to achieve error-independent
label complexity for arbitrary VC classes via our reduction. Intriguingly, as an implicit corollary of
our approach, we show the following (Theorem 4.1): for any hypothesis class with VC dimension d,
we can obtain a co-training algorithm (under λ-weak dependence) that makes Õ(d log(1/(λϵ))/α)
label queries over a stream of poly(d, 1/(λϵ), 1/α) unlabeled examples. Our argument combines the
technique of constructing ϵ-covers with unlabeled examples and the well-known Halving algorithm.
This label query upper bound still achieves an exponential improvement on the label complexity,
compared to the standard Õ(d/ϵ) label complexity of passive supervised learning. We note however
that the running time of such a generic algorithm is not polynomial in general. Finally, we remark
that the label complexities of Theorem 3.2 and Theorem 4.1 have a very mild dependence on the
parameter λ. This is especially beneficial, since in practical settings, λ is usually taken to be a very
small quantity (since λ-weak dependence is a strong assumption).

Since it is in general impossible to design a single computationally efficient learning algorithm
that works for every hypothesis class, in the third part of the work we focus on designing efficient
co-training algorithms for two concrete classes — k-unions of intervals and homogeneous halfspaces
(both have infinite Littlestone dimension and have label complexity Ω(1/ϵ) in the standard active
learning model [Das05]). For the class of k-unions of intervals, we give an efficient co-training learner
with label complexity Õ(k2 log(1/(λϵ))/(λα)). For the class of homogeneous halfspaces (without
a margin assumption), we show the following: assuming that the marginal distribution on one
view is approximately symmetric, we given an efficient co-training learner with label complexity
Õ(d2 log(1/ϵ)). The analysis of our algorithms might be of independent interest.

1.2 Related Work

Theoretic Analysis for Co-Training The theory of co-training has been developed since the
late 90s, [BM98, Abn02, DLM01, BB10, DSS14, BBY04, BM17]. Unlike our algorithmic framework,
previous algorithmic templates are designed in a “boosting” style. That is, they use labeled examples
to train a weak hypothesis h1 over X1 and use h1 to label examples in X2; finally, they use learning
algorithms with very strong guarantees to learn a good hypothesis over X2 using the “unreliable”
labels. For example, in [BM98], given a weak hypothesis h1 in X1, they label a random (x1, x2) by
h1(x1); under 1-weak dependence, the label of a random x2 can be seen as corrupted by random
classification noise so that they can use a robust learner to find a good hypothesis over X2. However,
once we relax the assumption to λ-weak dependence, such a method fails immediately, because
without having a good enough initial hypothesis h1, the above labeling method could make some x2
have adversarially corrupted labels, thus making it impossible to recover the target hypothesis in
X2.
Label Complexity of Active Learning Our work could be viewed as learning in the active
learning model with additional co-training assumptions. Active learning is another learning model
which targets reducing the label complexity of supervised learning. Unlike co-training, which has
error-independent label complexity (information-theoretically), it has been pointed out by [Das05,
Han12, HY15] that active learning in the worst case has the same label complexity as passive learning.
Even for simple classes such as unions of intervals and halfspaces in more than 2 dimensions (even
with large margin), there exist distributions for which any learning algorithm that outputs a
hypothesis with error O(ϵ) must make Ω(1/ϵ) label queries. Thus, designing efficient learning
algorithms with o(1/ϵ) label complexity is both important and challenging.

4

Application of Online Learning to Other Models Online learning is a well-studied model
that focuses on how to learn in a sequential adversarial setting. Although fully adversarial learning
is unrealistic in practice, the idea of online learning usually has important applications in other
learning problems, such as boosting algorithms [FS97], learning in games [FL98], and reinforcement
learning [AJK19]. Our work also applies the idea of online learning to a seemingly unrelated task,
that of co-training. A seemingly similar application of online learning is the well-known “online
to PAC” conversion [Lit89]. Specifically, if a class H can be learned in the mistake-bound model
with M mistakes, we can convert the online learner to a PAC learner with sample complexity
N = O(Mϵ log(Mδ)). That is, one needs to use N labeled examples during the learning process
(because in each round the online learner must receive feedback and know the true label of the
example used in every single iteration). On the other hand, the focus of Theorem 3.2 is the number
of labeled examples used in the training process. The importance of the guarantee in Theorem 3.2
is that, with the help of adaptivity, the resulting label complexity Õ(M/α) is independent of the
accuracy parameter ϵ.
Active Learning for Co-Training Finally, we point out that the idea of combining co-training
and pool-based active learning was previously empirically studied in a number of works [MMK00,
MMK06, FAHS10]. Several learning and query strategies have been empirically shown to be useful
in obtaining hypotheses with low error — to the best of our knowledge, our work is the first one
that introduces a reduction from co-training to online learning and provides provable guarantees for
both label complexity and computational complexity. Last, we mention that [WZ08] claim that a
different pool-based active learning strategy can be applied to obtain co-training algorithms with
Õ(d log(1/ϵ)) label complexity for any hypothesis class with VC dimension d. However, as explained
in Appendix D, the distributional assumption made in their work contradicts the co-training
assumption, i.e., no distribution satisfies their requirements.

2 Notations and Preliminaries

Definition 2.1. (Co-Traing Assumption) We say a learning problem (X,H) satisfies the co-training
assumption if it satisfies the following requirement. There are spaces of examples X1, X2 such that
each x ∈ X can represented as the form (x1, x2), where x1 ∈ X1, x2 ∈ X2. Furthermore, there are
hypothesis classes H1 over X1 and H2 over X2 such that for every h ∈ H there exist h1 ∈ H1 and
h2 ∈ H2 such that h1(x1) = h(x) = h2(x2) for every example x.

For simplicity, if we do not specify it when we say (X,H) satisfies the co-training assumption,
we mean X = X1 = X2 and H = H1 = H2.

Let (X,H) be a learning problem that satisfies the co-training assumption and let D be the
marginal distribution over X. For i ∈ [2], we denote by Di the marginal distribution of D over Xi.
For y ∈ {±1}, denote by Dy the distribution of x conditioned on h∗(x) = y and denote by αy the
probability that a random example x has label y and α := min{α1, α−1}. For y ∈ {±1} and i ∈ [2],
denote by Dy

i the marginal distribution of xi of distribution Dy.

Definition 2.2. (Weak Dependence Assumption) Let (X,H) be a learning problem that satisfies
the co-training assumption. Let D be the marginal distribution over X. For λ ∈ [0, 1], we say
that distribution D satisfies λ-weak dependence if for every y ∈ {±1} and for every (x1, x2) ∈ Dy,
Dy(x1, x2) ≥ λDy

1(x1)D
y
2(x2).

Let f = (f1, f2) be a pair of hypotheses, where f1 : X1 → {±1} and f2 : X2 → {±1}. We
define the unlabeled error of f as unl(f) := Prx∼D(f1(x1) ̸= f2(x2)). Sometimes we will also treat
a hypothesis pair f = (f1, f2) itself as a hypothesis. That is, for some x = (x1, x2), if for some

5

y ∈ {±1}, f1(x1) = f2(x2) = y, then f(x) = y. Otherwise, f assigns an arbitrary label to x. Based
on this, we define the distance and error of hypotheses. Let h ∈ H be some hypothesis. We define
the distance between f and h as d(f, h) := 1 − Prx∼D(f1(x1) = f2(x2) = h(x)). In particular
err(f) := d(f, h∗). Throughout the paper, we will also use the notation ûnl, d̂, ˆerr to denote the
corresponding empirical quantity when evaluated at some sample set S.

In this paper, we are also interested in learning geometric concepts whenX = Rd. We will use ⟨·, ·⟩
to denote the inner product and use ∥·∥ to denote the ℓ2 norm. Let H = {sign(⟨w∗, x⟩) | w∗ ∈ Rd}
be the class of half spaces in Rd. A marginal distribution D satisfies the γ-margin assumption if
|⟨w∗,x⟩|
∥w∗∥∥x∥ ≥ γ holds with probability 1, where w∗ is the target. When (X,H) satisfies the co-training

assumption, we say the distribution D satisfies γ-margin assumption if for i ∈ [2], the margin
assumption over Xi satisfies the γ-margin assumption. Finally, we state the following lemma, which
will be heavily used in this paper.

Lemma 2.3. [Restatement of Lemma 13 in [BM17]] Let (X,H) be a learning problem that satisfies
the co-training assumption and D be the marginal distribution over X that satisfies λ-weak dependence.
Let f = (f1, f2) be a pair of hypotheses over X. For every ϵ ∈ (0, 1), if unl(f) < ϵ, then at least one
of the following holds. d(f, 1) < 4ϵ/λ, d(f,−1) < 4ϵ/λ, err(f) < 4ϵ/λ, err(−f) < 4ϵ/λ.

3 Co-Training via Online Classification

Here we present our first main result which shows that with the power of label queries, we can
efficiently transform an online classification algorithm into a co-training algorithm, using very few
label queries. To start with, we remind the reader of the mistake-bound model for online learning.

Definition 3.1. (Mistake Bound Online Learning Model) Let X be a space of example and H be a
class of hypothesis over X. Let h∗ ∈ H be the unknown target hypothesis. An online classification
algorithm A works in the following way. In round t, A maintains some hypothesis ht, some x(t)

selected by an adversary is presented to A and A makes a prediction ht(x(t)) for the label h∗(x(t))
and sees h∗(x(t)). When ht(x(t)) ̸= h∗(x(t)), we say A makes a mistake. We say A runs in time T
with a mistake bound M for hypothesis class H if for every h∗ ∈ H and every possible sequence of
examples, A makes at most M mistakes and makes each update in time T .

Theorem 3.2. Let (X,H) be a learning problem that satisfies the co-training assumption, and let
D be a distribution over X that is λ-weak dependence. If there exists an online learning algorithm
A1 for H1 and A2 for H2 such that A1,A2 run in time T with a mistake bound M , then there is
a learning algorithm A such that for ϵ, δ ∈ (0, 1), it draws m = Õ(poly(M, 1/α, 1/(λϵ))) unlabeled
examples, makes Õ(M/α) label queries runs in time O(Tm) and outputs a hypothesis ĥ such that
with probability at least 1− δ, err(ĥ) < ϵ.

Before proving Theorem 3.2, we give an overview of the intuition behind Algorithm 1. Algorithm 1
runs A1,A2 simultaneously over the two views. When a random example x(t) arrives, we use A1,A2

to predict its label. If the predictions are different, we query its label and make an update because
one of the two algorithms is guaranteed to make a mistake. If the predictions are the same, we
check if the two hypotheses used by A1,A2 have agreed on many examples. By Lemma 2.3, we
know that if this is the case, then the current hypothesis pair (ht1, h

t
2) is close to either ±h∗ or

±1. In particular, if (ht1, h
t
2) does not label too many examples by +1 or by −1, then this pair

of hypotheses must be close to the target and we can safely output it. If (ht1, h
t
2) is very close

to a constant hypothesis, then we can simply continuously request labels of examples because in
expectation after O(1/α) rounds we will see an example where both algorithms make a mistake.

6

Algorithm 1 Reduction(A1,A2) (Efficient Black-Box Reduction from Co-Training to Online
Learning)

Input: Online learning algorithm Ai for Hi, i ∈ {1, 2}, sample access to distribution D, a label
oracle, accuracy parameter ϵ ∈ (0, 1), confidence parameter δ ∈ (0, 1)
Output: A hypothesis ĥ with error err(ĥ) < ϵ with probability at least 1− δ
for t = 1, 2, . . . do

Compute hti, the hypothesis used by Ai in round t.

Draw example x(t) = (x
(t)
1 , x

(t)
2) ∼ D

if ht1(x
(t)
1) ̸= ht2(x

(t)
2) then

Query the label of x(t) and enter the next round.
end if
if A1,A2 have continuously agreed on n = poly(1/(λϵ), log(M/δ)) rounds then

if ∀y ∈ {±1}, more than Ω(ϵ) fraction of the agreed examples are labeled by y then
Return ĥ = (ht1, h

t
2)

else
Query the label of x(t) and enter the next round if h∗(x(t)) ̸= ht1(x

(t))
end if

end if
Delete x(t) from the memory and enter the next round

end for

When we do not make a query label for x(t) or the queried label agrees with both predictions of
A1,A2, we simply delete this example from the memory and run A1,A2 as if x(t) has not appeared,
so that they do not change the hypothesis. We notice that after making 2M updates, Algorithm 1 is
guaranteed to stop because both A1,A2 will not make any more mistakes, and to make one update
we only need to make O(1/α) queries. Thus, Algorithm 1 only makes O(M/α) label queries over a
stream of unlabeled examples. Furthermore, the running time of Algorithm 1 is the same as that of
A1,A2, since in every round it only requests labels or makes updates using A1,A2.

Proof of Theorem 3.2. We start by showing the correctness of Algorithm 1. Notice that during
the execution of Algorithm 1, the hypothesis pair (ht1, h

t
2) will not change until some example x

is queried and at least one of hti, i ∈ [2], makes a mistake on x. Now we consider a fixed pair of
hypotheses ht = (ht1, h

t
2). Let S be a set of n = poly(1/ϵ, log(M/δ)) unlabeled examples drawn

i.i.d. from D. By Hoeffding’s inequality, we have PrS∼Dn

(∣∣∣ûnl(ht)− unl(ht)
∣∣∣ ≥ λϵ

4

)
≤ O(δ

M). Thus,

with probability at least 1 − O(δ/M), unless unl(ht) < λϵ, ht will not continuously agree on n
randomly drawn examples. By Lemma 2.3, we know that ht is ϵ-close to either ±h∗ or ±1. For
y ∈ {±1}, denote by bty := Prx∼D(h

t(x) = y). By Hoeffding’s inequality again, for a set of n

randomly unlabeled samples S, we have PrS∼Dn

(∣∣∣∑x∈S 1(ht(x)=y)

n − bty

∣∣∣ ≥ ϵ
)
≤ O(δ

M). In particular,

if ht is close to ±h∗, then for every y ∈ {±1}, we have Prx∼D(h
t(x) = y) ≥ α − ϵ ≥ α/2. Thus,

with probability at least 1− O(δ/M), for every y ∈ {±1}, more than Ω(ϵ) fraction of the agreed
examples are labeled by y and ht will be output. On the other hand, if ht is close to ±1, then with
probability at least 1−O(δ/M), ∃y ∈ {±1} such that ht only labels O(ϵ) fraction of them to be y,
and thus ht will not be output. We remark that here, for simplicity, we assume when ht is close to
±h∗, it is close to h∗, because we can check this by testing the empirical error of h∗ over O(log(1/δ))
random labeled examples, and this will not affect the performance of our algorithm.

So far, our analysis works for a fixed hypothesis pair. To finish the proof of the correctness, we

7

will show that throughout the execution of Algorithm 1, there are at most 2M hypothesis pairs
and at least one of them is close to h∗. Denote by x(t1), . . . , x(tk) the sequence of examples, where
either A1 or A2 makes an update throughout the execution of Algorithm 1. We notice that these
examples are the only examples that are in memory when we use Ai to compute hypothesis hti for
i ∈ [2]. In other words, for i ∈ [2], the performance of Ai during the execution of Algorithm 1 is the
same as that of Ai when it runs over the sequence of the examples x(t1), . . . , x(tk). According to
Algorithm 1, for each example in this sequence, either A1 or A2 will make a mistake. Since both
A1 and A2 have a mistake bound of M , if Ai makes M mistakes in the sequence then after that
the hypothesis computed by Ai will not make any mistakes. According to Algorithm 1, for each
example in this sequence, either A1 or A2 will make a mistake. Thus, the length of the sequence is
at most 2M , and only at most 2M pairs of hypotheses are used by Algorithm 1. Furthermore, if
A1 and A2 both make M mistakes, then after querying x(tk), both A1 and A2 will not make any
mistakes; thus, there must be at least one pair of hypotheses that is close to h∗. Now, if a hypothesis
pair ht is close to h∗, then with probability 1−O(δ/M), it will be output. If a hypothesis pair ht is
not close to ht, then with probability 1−O(δ/M) it will not be output. By the union bound, we
know that with probability at least 1−O(δ), Algorithm 1 will output a hypothesis ĥ with error at
most ϵ. This finishes the proof of correctness.

We next upper bound the label complexity and the number of unlabeled examples used by
Algorithm 1. We start with the label complexity. We make a label query when either ht disagrees on
some unlabeled example or ht is close to ±1. In the first case, we make a single query. In the second
case, without loss of generality, we assume d(ht, 1) < ϵ. Since a random example has a probability
at least α to be negative, we know that with probability at least α− ϵ ≥ α/2, it will be misclassified
by ht. In expectation, after making O(1/α) label queries, we will see an example misclassified by
ht and update ht. By Markov’s inequality, no matter which case we are in, with probability at
least 1−O(δ/M), we will make at most Õ(1/α) label queries to make an update. As we discussed
above, throughout the execution of Algorithm 1, we will in total make 2M updates, which implies
the with probability at least 1−O(δ) the total number of label queries made by Algorithm 1 is at
most Õ(M/α). On the other hand, the total number of unlabeled examples is the label complexity
plus the number of examples used to estimate unl(ht), which is n = O(poly(1/(λϵ)), log(M/δ))
between a single update. Thus, the total number of unlabeled examples used by Algorithm 1 is
m = O(poly(M, 1/α, 1/(λϵ), log 1/δ)). Finally, the running time of Algorithm 1 directly follows the
fact that it runs in time O(T) for every single iteration.

As corollaries of Theorem 3.2, we obtain the first efficient co-training algorithms for a broad
class of hypotheses under the weak dependence assumption. One of the most interesting results
is on learning margin halfspaces under weak dependence. Before this work, the only known
efficient co-training halfspaces algorithm [BM17] under the weak dependence assumption, not only
assumes D satisfies the margin assumption but also makes non-trivial structural assumptions over
D. Furthermore, the algorithm is fairly complicated and needs to solve polynomially many large
convex programs. On the contrary, based on Algorithm 1, we give the first linear time co-training
algorithm for learning margin halfspaces under weak dependence without making any assumption
on the marginal distribution.

Corollary 3.3. Let X = Sd−1 and H be the class of halfspaces over X. Assume (X,H) satisfies
the co-training assumption. Let D be any distribution over X that satisfies λ-weak dependence and
γ-margin assumption. There is an algorithm such that for δ, ϵ ∈ (0, 1), with probability at least 1− δ
it draws m = Õ(poly(1/γ, 1/α, 1/(λϵ))) unlabeled examples from D makes Õ(1/(γ2α)) label queries,
runs in O(dm) time, and outputs a hypothesis ĥ with err(ĥ) < ϵ.

8

Proof. It is well-known that if a sequence of example (x(t))∞t=1 ⊆ Rd satisfies the margin assumption
⟨w∗,x(t)⟩

∥w∗∥∥x(t)∥ ≥ γ, then the perception update w(t+1) = w(t) + y(x(t))x(t), when x(t) is predicted

incorrectly gives an online classification algorithm with mistake bound O(1/γ2). Each update takes
time O(d) to implement. Corollary 3.3 follows directly by Theorem 3.2.

We also summarize additional implications of Theorem 3.2 in Table 1. We point out that before
this work no efficient co-training algorithms were known for these classes under weak dependence.

Hypothesis Class Label Complexity Time/Iteration

Disjunctions Õ(n/α) O(n)

Conjunctions Õ(n/α) O(n)

L-Deep-Decision List Õ(nL/α) O(nL)

k-Term-DNF Õ(nO(k)/α) nO(k)

k-CNF Õ(nO(k)/α) nO(k)

Table 1: Label Complexity and Running Time per Iteration for Several Hypothesis Classes over
Boolean Domain {0, 1}n.

We notice that there is a dependence on α, the bias of the target hypothesis, in our label
complexity. However, information-theoretically, such a dependence is not necessary. The dependence
on α is not unique to our algorithmic framework. We point out that though not formally stated,
such a dependence also implicitly exists in previous algorithmic frameworks such as [BM98]. These
frameworks assume a weakly useful hypothesis is trained over a small pool of randomly drawn labeled
examples L. A weakly useful hypothesis is a hypothesis h such that for every y ∈ {±1} an example
with label y has probability at most 1/2− β that is labeled incorrectly for some constant β > 0.
In particular, unless the hypothesis class has a good structure if |L| < o(1/α), then every labeled
example in L will have the same label and such a weakly useful hypothesis cannot be obtained. It is
unclear if such a dependence is necessary to obtain a computationally efficient algorithm, and we
leave it as an important open question.

4 Co-Training beyond Finite Mistake Bound

Although Algorithm 1 shows that many hypotheses classes can be efficiently learned via co-training
with only a constant number of label queries, it requires the existence of an online learning algorithm
with finite mistake bound. However, not every hypothesis class has such a property. In this section,
we show that the idea of online learning still leads to co-training algorithms for hypothesis classes
with finite VC dimension (even if they are not online learnable under the mistake-bound model)
with low label complexity.

4.1 Learning General VC-Classes in Exponential Time

We first show that the idea of using online learning information theoretically still exponentially
improves the label complexity of learning a general VC class over the label complexity in the passive
learning setting (the detailed proof for Theorem 4.1 is deferred to Appendix A).

Theorem 4.1. Let (X,H) be a learning problem that satisfies the co-training assumption, where
V C(H) = d. Let D be a distribution over X that satisfies λ-weak dependence. There is an
(exponential time) algorithm such that for ϵ, δ ∈ (0, 1), it draws m = poly(d, 1/(λϵ), log(1/δ))

9

unlabeled examples, makes Õ(d log(1/(λϵ))/α) many label queries, and outputs a hypothesis ĥ with
error err(ĥ) < ϵ.

Theorem 4.1 could be seen as an implicit corollary of Theorem 3.2. It is well known that if H is
finite then under the mistake bound model, the Halving algorithm can learn H with O(log(|H|)
mistakes. Although H in general is infinite, according to [HY15], we can draw poly(d/η) unlabeled
examples to construct an η-cover C for H with size Õ((d/η)d). This guarantees that for all h ∈ H
there exists c ∈ C such that d(h, c) < η. Importantly, if we set η = poly(ϵ, λ, d), then with
probability at least 1/2, there exists c∗ ∈ C that agrees with h∗ on every unlabeled example we use.
Thus, we can simply implement Algorithm 1 with the Halving algorithm by assuming the target
hypothesis is in C. In expectation after repeating Algorithm 1 several times, we finally learn a good
hypothesis with label complexity Õ(log |C|/α) = Õ(d log(1/(λϵ))/α).

Since the Halving algorithm in general is not computationally efficient, in the rest of the paper,
we will focus on developing efficient co-training algorithms for two concrete hypothesis classes:
k-unions of intervals halfspaces (both have Ω(1/ϵ) label complexity in the standard active model).

4.2 Co-Training k-Unions of Intervals

Theorem 4.2. Let (X,H) be a learning problem that satisfies the co-training assumption, where
X = R and H is the class of k-union of intervals over R. i.e. for each h ∈ H, there exists k
intervals Ii, i ∈ [k] such that h(x) = 1 if and only if x ∈

⋃
i∈[k] Ii. Let D be a distribution over X

that satisfies λ-weak dependence. There is an algorithm such that for ϵ, δ ∈ (0, 1), with probability
1 − δ it draws m = poly(k, 1/(λϵ), log(1/δ)) unlabeled examples, makes Õ(k2 log(1/(λϵ)) + k/α)
many label queries, runs in poly(m) time and outputs a hypothesis ĥ with error err(ĥ) < ϵ.

We present Algorithm 2, our learning algorithm for the class of the union of k intervals. The
proof of Theorem 4.2, can be found in Appendix B. Here we give the intuition behind Algorithm 2.
For simplicity, we assume λ = 1. Initially, Algorithm 2 will sample Õ(k/α) examples and query their
labels. We use these examples to construct an initial hypothesis (h01, h

0
2) over the two views. We

show in Claim B.1, by the VC inequality, any hypothesis class that is consistent with these labeled
examples will be far from the constant hypothesis. Throughout the execution of Algorithm 2, we will

make a small modification for hti when it makes an incorrect prediction on x
(t)
i . Since hti is a union

of at most k intervals, the region where positive examples are misclassified by hti is also a union
of O(k) intervals. For simplicity, we denote this region by ∪jRt

ij . According to the 1-dependent

assumption we made, when some x
(t)
i with a positive label is misclassified by hti, we can treat it as a

random example sampled from D+
i conditioned on ∪jRt

ij . Together with the modification method

used by Algorithm 2, we can show that if such x
(t)
i ∈ Rt

ij , then with constant probability Pr(Rt
ij)

will drop by a constant factor. This implies that after seeing such an example x
(t)
i with constant

probability, err+(h
t
i) will drop by a factor of (1− 1/O(k)). A similar analysis holds if a negative

example x
(t)
i is misclassified. This intuitively gives that after making O(k log(1/(λϵ))) mistakes

err(hti) will be roughly O(λϵ) and, according to Lemma 2.3, it will be output. However, such a
direct analysis is not fully correct, because when we make a modification that tends to decrease
the err+(h

t
i), err−(h

t
i) might increase due to the modification, and similarly err+(h

t
i) might increase

when we try to decrease err−(h
t
i). We show in Appendix B that by employing the structure of the

hypothesis class, our update method can ensure that these bad events happen at most O(k) times
before we output a good hypothesis, and thus we can still achieve an exponential improvement on
the label complexity.

10

Algorithm 2 LearnK-Interval (Efficient co-training k intervals)

Input: A sample access to D, a label query oracle, accuracy parameter ϵ ∈ (0, 1), confidence
parameter δ ∈ (0, 1)
Output: A hypothesis ĥ with error err(ĥ) < ϵ with probability at least 1− δ
Draw Õ(k/α) examples from D and query their labels. Over X1, X2, construct initial hypothesis
pair (h11, h

1
2) as follows.

For i ∈ [2], let Qi ⊆ Xi be the queried examples. Repeat the following procedure until no positive
examples are in Qi

1. Find xai , the first positive example in Qi and xbi the smallest negative example in Qi

such that x−i > x+i
2. Denote by I, the set of positive examples in Qi between xai and xbi (including xai).
3. Create a new interval conv(I) for h1i and delete I from Qi

Write h1i =
⋃

j=1 I
1
ij . (I

1
ij ordered by position from left to right)

COUNTT ← 0, COUNTU ← 0
n = poly(1/(λϵ), log(1/δ))
for t = 1, 2, . . . do

Draw example x(t) = (x
(t)
1 , x

(t)
2) ∼ D

if COUNTT < n then
COUNTU ← COUNTU + 1, if ht1(x

(t)
1) ̸= ht2(x

(t)
2).

COUNTT ← COUNTT + 1 and enter next round
end if
if COUNTT ≥ n and COUNTU

COUNTT
< λϵ

8 then

Return (ht1, h
t
2).

end if
{Check if the current hypothesis is good enough}
if ht1(x

(t)
1) ̸= ht2(x

(t)
2) then

Query the label of x(t)

if y(x(t)) = 1 and is misclassified by hti then

Find j such that x
(t)
i lies between Itij and Iti(j+1) and modify htij as follows:

1. If conv(Itij ∪ {x
(t)
i }) contains no negative examples queried before, Itij ← conv(Itij ∪

{x(t)i }), otherwise;
2. If conv(Iti(j+1) ∪ {x

(t)
i }) contains no negative examples queried before, Iti(j+1) ←

conv(Iti(j+1) ∪ {x
(t)
i });

3. Otherwise, create {x(t)i } as a new interval for hti.
end if
if y(x(t)) = 0 and is misclassified by hti then
Find the interval Itij that contains x(t) and modify hti by dividing Itij into two intervals

end if
COUNTT ← 0, COUNTU ← 0

end if
end for

11

4.3 Co-Training Homogeneous Halfspaces

Finally, we design an efficient algorithm for learning homogeneous halfspaces (without a margin
assumption) under weak independence and approximate symmetric assumption. In Corollary 3.3,
the algorithm works only when the target halfspace has a margin γ, while in this section, we do
not make such an assumption. As an alternative, we require that one of the marginal distributions
(without loss of generality D1 of x1) satisfies an approximate reflective symmetry assumption.
Namely, we need D1(x1)/D1(−x1) to be always bounded between [α, 1/α] for some α ≤ 1. Under
this assumption, we have the following theorem (the detailed proof is deferred to Appendix C).

Theorem 4.3. Let (X,H) be a learning problem where X = Rd × Rd and H be the class of
homogeneous halfspaces that satisfies the co-training assumption. Let D be a distribution over X that
satisfies λ-weak dependence and let D1 be the marginal distribution of x1 satisfies the α-reflective
symmetry, namely, for any x1 ∈ X1, D(x1)/D(−x1) ∈ [α, 1/α] for some α ≤ 1. There is an
algorithm such that for ϵ, δ ∈ (0, 1), with probability at least 1− δ it draws m = poly(d, 1/ϵ, 1/α, 1/λ)
unlabeled examples, makes Õ(d2 log(1/ϵ)) label queries and returns a hypothesis ĥ such that err(ĥ) <
ϵ.

We give the intuition behind Theorem 4.3 here. For simplicity, we assume α = 1. Let us assume
that for i ∈ [2], marginal distribution Di in the statement also satisfies the following property,
for every vector wi ∈ Xi, with probability at least β, a random example drawn from Di has a
margin at least γ with respect to wi. This implies that if we can learn some wi that can correctly
classify every example xi that has a margin γ with respect to it, then we can correctly label β
fraction of the distribution Di. Fortunately, under the mistake bound, a modified version of the
perceptron algorithm developed by [BFKV98] can learn such a wi with poly(1/γ) mistakes. Thus,
by implementing the modified perceptron algorithm via Algorithm 1, we are able to use poly(1/γ)
label queries to learn such wi up to a small error. This suggests if after removing the region
{xi ∈ Xi | |⟨wi, xi⟩| ≥ γ} from Di, the rest of the distribution still satisfies the assumed property,
then after running the method recursively Õ(1/β) log(1/ϵ) times there is at ϵ fraction of Di we
cannot correctly classify.

Although the above margin property is not satisfied by every distribution, Forster’s transform
[For02, HM13, DKT21, DTK23] (see Fact C.1) provides us with a way to overcome the difficulties.
Roughly speaking, for every distribution Di, we learn with a pool of unlabeled examples in
polynomial time, a subspace V of dimension k, and a non-linear transform fA(·) such that (1)
Prxi∼Di(xi ∈ V) ≥ Ω(k/d), (2) for every wi ∈ V and a random example xi drawn from Di | V , with
probability at least Ω(1/k), fA(xi) has a margin Ω(1/

√
k) (see Fact C.2). With the help of Forster’s

transform, with poly(d) label queries, we are able to classify at least Ω(1/d) fraction of Di correctly
using the margin perception algorithm in Fact C.3. In particular, we will show in Appendix C
that after deleting the region we have classified so far, the remaining distribution still satisfies the
reflective symmetry assumption. Thus, after O(d log(1/ϵ)) rounds, only O(ϵ) fraction of the Di has
not been classified, which implies that we have learned a good enough hypothesis.

Acknowledgement

Ilias Diakonikolas was supported by NSF Medium Award CCF-2107079, NSF Award CCF-1652862
(CAREER), a Sloan Research Fellowship, and a DARPA Learning with Less Labels (LwLL) grant.
Lisheng Ren was supported by NSF Award CCF-1652862 (CAREER). Mingchen Ma and Christos
Tzamos were supported by NSF Award CCF-2144298 (CAREER).

12

References

[Abn02] Steven Abney. Bootstrapping. In Proceedings of the 40th annual meeting of the Associa-
tion for Computational Linguistics, pages 360–367, 2002.

[AJK19] Alekh Agarwal, Nan Jiang, and Sham M Kakade. Reinforcement learning: Theory and
algorithms. 2019.

[BB10] Maria-Florina Balcan and Avrim Blum. A discriminative model for semi-supervised
learning. Journal of the ACM (JACM), 57(3):1–46, 2010.

[BBY04] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion: Towards
bridging theory and practice. Advances in neural information processing systems, 17,
2004.

[BFKV98] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-time
algorithm for learning noisy linear threshold functions. Algorithmica, 22:35–52, 1998.

[Blu05] Avrim Blum. On-line algorithms in machine learning. Online algorithms: the state of
the art, pages 306–325, 2005.

[BM98] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training.
In Proceedings of the eleventh annual conference on Computational learning theory, pages
92–100, 1998.

[BM17] Avrim Blum and Yishay Mansour. Efficient co-training of linear separators under weak
dependence. In Conference on Learning Theory, pages 302–318. PMLR, 2017.

[CS99] Michael Collins and Yoram Singer. Unsupervised models for named entity classification.
In 1999 Joint SIGDAT conference on empirical methods in natural language processing
and very large corpora, 1999.

[Das05] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. Advances in
neural information processing systems, 18, 2005.

[DKT21] Ilias Diakonikolas, Daniel Kane, and Christos Tzamos. Forster decomposition and
learning halfspaces with noise. Advances in Neural Information Processing Systems,
34:7732–7744, 2021.

[DKTZ23] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Self-directed
linear classification. In The Thirty Sixth Annual Conference on Learning Theory, pages
2919–2947. PMLR, 2023.

[DLM01] Sanjoy Dasgupta, Michael Littman, and David McAllester. Pac generalization bounds
for co-training. Advances in neural information processing systems, 14, 2001.

[DSS14] Malte Darnstädt, Hans Ulrich Simon, and Balázs Szörényi. Supervised learning and
co-training. Theoretical Computer Science, 519:68–87, 2014.

[DTK23] Ilias Diakonikolas, Christos Tzamos, and Daniel M Kane. A strongly polynomial
algorithm for approximate forster transforms and its application to halfspace learning.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages
1741–1754, 2023.

13

[DV04] J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving
linear programs. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pages 315–320, 2004.

[FAHS10] Mohamed Farouk Abdel Hady and Friedhelm Schwenker. Combining committee-based
semi-supervised learning and active learning. Journal of Computer Science and Technol-
ogy, 25(4):681–698, 2010.

[FL98] Drew Fudenberg and David K Levine. The theory of learning in games, volume 2. MIT
press, 1998.

[For02] Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[FSST97] Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling
using the query by committee algorithm. Machine learning, 28:133–168, 1997.

[Han12] Steve Hanneke. Activized learning: Transforming passive to active with improved label
complexity. The Journal of Machine Learning Research, 13(1):1469–1587, 2012.

[HM13] M. Hardt and A. Moitra. Algorithms and hardness for robust subspace recovery. In
COLT 2013, pages 354–375, 2013.

[HY15] Steve Hanneke and Liu Yang. Minimax analysis of active learning. J. Mach. Learn. Res.,
16(1):3487–3602, 2015.

[J+99] Thorsten Joachims et al. Transductive inference for text classification using support
vector machines. In Icml, volume 99, pages 200–209, 1999.

[KD11] Abhishek Kumar and Hal Daumé. A co-training approach for multi-view spectral
clustering. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 393–400, 2011.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine learning, 2:285–318, 1988.

[Lit89] Nick Littlestone. From on-line to batch learning. In Proceedings of the second annual
workshop on Computational learning theory, pages 269–284, 1989.

[LLL+14] Weifeng Liu, Yang Li, Xu Lin, Dacheng Tao, and Yanjiang Wang. Hessian-regularized
co-training for social activity recognition. PLoS One, 9(9):e108474, 2014.

[LWLC21] Shu Li, Wei Wang, Wen-Tao Li, and Pan Chen. Multi-view representation learning with
manifold smoothness. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8447–8454, 2021.

[MMK00] Ion Muslea, Steven Minton, and Craig A Knoblock. Selective sampling with redundant
views. In AAAI/IAAI, pages 621–626, 2000.

14

[MMK06] Ion Muslea, Steven Minton, and Craig A Knoblock. Active learning with multiple views.
Journal of Artificial Intelligence Research, 27:203–233, 2006.

[PZ03] Seong-Bae Park and Byoung-Tak Zhang. Large scale unstructured document classification
using unlabeled data and syntactic information. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 88–99. Springer, 2003.

[SLYO20] Jialin Song, Ravi Lanka, Yisong Yue, and Masahiro Ono. Co-training for policy learning.
In Uncertainty in Artificial Intelligence, pages 1191–1201. PMLR, 2020.

[WZ08] Wei Wang and Zhi-Hua Zhou. On multi-view active learning and the combination with
semi-supervised learning. In Proceedings of the 25th international conference on Machine
learning, pages 1152–1159, 2008.

[Yar95] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods.
In 33rd annual meeting of the association for computational linguistics, pages 189–196,
1995.

15

Supplemental Material

A Label Efficient Co-Training of General VC-Classes via Online
Learning

In this section, we prove Theorem 4.1, which shows the idea of online learning can even lead to
co-training algorithms for any VC class with a low label complexity.

To start with, we want to remind readers of the notion of ϵ-cover and Halving Algorithms, which
will play crucial roles in the proof of Theorem 4.1.

Definition A.1 (ϵ-cover). Let H be a class of hypotheses over an example space X. Let D be a
distribution over X. An ϵ-cover of H under distribution D is a finite set of hypotheses C over X
such that for every h ∈ H, there exists some c ∈ C such that d(h, c) < ϵ.

Given a hypothesis class H with VC dimension d, and a sample oracle to D, according to Lemma
21 in [HY15], we can construct an ϵ cover for H with high probability via the following procedure.
Draw m = Õ(d/ϵ) unlabeled examples from D, for each possible labeling method l over these m
examples, select one h ∈ H that agrees with l over these m examples and add it to C. In particular,
by Sauer’s lemma, |C| ≤ O(md) and log(|C|) ≤ Õ(d log(1/ϵ)).

Definition A.2 (Halving Algorithm). Let H be a finite set of hypotheses over example space
X. In the mistake-bound online learning model, a halving algorithm works in the following
way. Let Ht ⊆ H be the set of hypotheses that are consistent with the sequence of labeled
examples (x1, y1), . . . , (xt−1, yt−1) seen so far. When xt arrives, the Halving algorithm predicts xt
by argmaxy∈{±1}{|{h ∈ Ht | h(xt) = y}| | y ∈ {±1}}.

It is well known that the Halving algorithm has a mistake bound O(log(|H|)). In particular,
if the sequence of labeled examples is not consistent with any h ∈ H, after making O(log(|H|))
mistakes, we can verify this.

Given the background of ϵ-cover and Halving algorithm, we are ready to present the proof of
Theorem 4.1.

Proof of Theorem 4.1. We will show Algorithm 3 is an algorithm that satisfies the statement of
Theorem 4.1. We first show the correctness of Algorithm 3. Consider a single round of Algorithm 3.
There are two cases to consider.

In the first case, the learner manually stops Algorithm 1 and checks the quality of h = (h1, h2)
that is used by A1,A2 by sampling a set of unlabeled examples S from D.

Let S be a set of n = poly(1/(λϵ), log(1/δ)) unlabeled examples drawn i.i.d. from D. By
Hoeffding’s inequality, we have

Pr
S∼Dn

(∣∣∣ûnl(h)− unl(h)
∣∣∣ ≥ λϵ

8

)
≤ 2e

(
−λ2ϵ2n

64

)
≤ exp(−Ω(log 1/δ

ϵ
)). (1)

For y ∈ {±1}, denote by by := Prx∼D(h(x) = y). By Hoeffding’s inequality again, for a set of n
randomly unlabeled samples S, we have

Pr
S∼Dn

(∣∣∣∣∑x∈S 1(h(x) = y)

n
− by

∣∣∣∣ ≥ ϵ

)
≤ poly(δ). (2)

This implies that if h has an error Ω(ϵ) or is close to a constant hypothesis then with a high
probability it will not be returned.

16

Algorithm 3 co-Halving(H) (Co-training VC classes via Halving)

Input: A sample access to D, a label query oracle, accuracy parameter ϵ ∈ (0, 1), confidence
parameter δ ∈ (0, 1)
Output: A hypothesis h with error err(h) < ϵ with probability at least 1− δ
Repeat the following process until a pair of hypotheses h = (h1, h2) is output
For i ∈ [2], draw a set of ni unlabeled examples Si ∼ D(i), where ni = poly(d/(λϵ)).
For i ∈ [2], construct η-cover Ci of H over Xi using Si. (η is chosen as poly(λϵ/d) for some large
degree polynomial)
Let Ai be the halving algorithm over Ci, for i ∈ [2].
Run Reduction(A1,A2) by assuming h∗i ∈ Ci

if For i ∈ [2], at most one hypothesis in Ci is consistent with all previous label queries during
running Reduction(A1,A2). then
Stop Reduction(A1,A2) and output the hypothesis pair h = (h1, h2) that is currently used
by A1,A2

Draw S, a set of n = poly(1/λϵ, log(1/δ)) unlabeled examples from D and compute ûnl(h)
using S.
if ûnl(h) < O(λϵ) and ∀y ∈ {±1}, more than Ω(ϵ) fraction of the agreed examples are labeled
by y then
Return h = (h1, h2).

end if
else
Return the hypothesis output by (A1,A2).

end if

In the second case, before we manually stop Algorithm 1, it returns a pair of hypotheses
h = (h1, h2). Recall the stopping condition in Algorithm 1, h1, h2 need to agree on poly(1/(λϵ))
unlabeled examples and not to label too many of these examples by y ∈ {±1}, which is an even
stronger condition of return. Thus if h is not ϵ−close to the target hypothesis, then it will not be
returned.

Combining the two cases together, we know that if a pair of hypotheses h = (h1, h2) is returned
in a single round, then with probability 1− poly(δ), h has an error at most ϵ.

To finish the proof of the correctness, it suffices to show that each round, Algorithm 3 will
terminate with constant probability. If this is true, then high probability, that after running
O(log(1/δ)) rounds, Algorithm 3 will terminate and the output hypothesis is guaranteed to have
error ϵ. Since the online learning algorithm, we use in Algorithm 1 is the Halving algorithm over
the η-cover Ci. The mistake bound of the Halving algorithm is log(|Ci|) = Õ(d log(1/η)). We know
from Algorithm 1 that every time we use Algorithm 1, the number of unlabeled examples we use
is m = poly(log(|Ci|), 1/α, 1/(λϵ)). This implies that if we choose η = poly(λϵ/d) for some large
degree polynomial, then we can ensure mη < 1/4. In particular, let h∗i be the target hypothesis in
Xi, the guarantee of η-cover says there exists some c∗i ∈ Ci such that d(c∗i , h

∗
i) < η. By Markov’s

inequality, we know that with probability at least 1/2, for i ∈ [2], each x of these m unlabeled
examples satisfies h∗i (x) = c∗i (x). According to the Halving algorithm, when we manually stop
Algorithm 1, we exactly find (h1, h2) = (c∗1, c

∗
2), which has an error at most O(η) = o(λϵ). In

this case, (1) and (2) imply that with high probability (h1, h2) will be output. Thus, each round,
Algorithm 3 will terminate with a constant probability. This finishes the proof of the correctness.

Finally, we bound the label complexity of Algorithm 3, this follows directly from the proof
of the correctness. As discussed above the halving algorithm has a mistake bound log(|Ci|) =

17

Õ(d log(1/(λϵ))). In each round, after making Õ(d log(1/(λϵ))) updates, we are guaranteed to
mannually stop Algorithm 1. Since in the worst case to make an update we need to make Õ(1/α)
queries, we know the number of queries we make in a single round is Õ(d log(1/(λϵ))/α). This
finishes the proof of the label complexity since each round will terminate will a constant probability.

B Efficient Co-Training of k-Interval

In this section, we will prove Theorem 4.2. We restate Algorithm 2, as Algorithm 4. To avoid
confusion, we will first list some notations that we will use in the proof.

For i ∈ [2], we denote by h∗i = ∪jI∗ij the target hypothesis over Xi, where for each j ∈ [k], I∗ij is
one of the interval that defines h∗i . For simplicity, the index j is ordered according to the relative
positions of these intervals.i.e If 1 ≤ j < g ≤ k, then I∗ij lies on the left-hand side of I∗ig. For each
interval I∗ij , we will denote by l∗ij and r∗ij the left boundary and the right boundary of I∗ij . Since

Algorithm 4 runs in rounds, in round t, we will denote by ˆl∗tij and r̂∗tij the left boundary and the
right boundary of the convex hull of the examples in I∗ij that has been queried by Algorithm 4
before round t+ 1.

Since the concept h∗i is a union of k intervals, we know that the region in R, where examples are
labeled negative by h∗i is a union of at most k + 1 intervals. Similarly, we will use N∗

ij to denote
these “negative” intervals ordered from left to right.

We will also define similar notations for the hypothesis hti maintained in each round. Since for
each time step t and for each i ∈ [2], hti is defined by a union of several intervals. We will denote by
∪jItij these intervals, also ordered from left to right.

Finally, for every t and for each i ∈ [2], we decompose the error of erf hti in the following way

err(hti) = α+err+(h
t
i) + α−err−(h

t
i),

where for y ∈ {±1}, erry(hti) = Prxi∼Dy
i
(hti(xi) ̸= y).

Based on these notations, we present several structural results of learning k-intervals.
We start showing that our initialized hypothesis is not close to any constant hypothesis.

Claim B.1. [Property of the initial hypothesis] For i ∈ [2], let S be a set of Õ(k/α) examples drawn
randomly from Di. With probability at least 1 − δ, any hi ∈ H that correctly labels S satisfies
d(hi,+1) ≥ α/2 and d(hi,−1) ≥ α/2.

Proof of Claim B.1. Without loss of generality, we assume that Prx∼Di(h
∗
i (x) = +1) = α. We first

show that with probability at least 1− δ, for y ∈ {±1}, there are Õ(k) examples with label y. The
sampling process for S can be understood in the following way. We first draw a Bernoulli random
variable with parameter α, if we get 1 then we sample some x ∼ D+

i , otherwise, we sample some
x ∼ D−

i . In expectation, each round we will sample α example from D+
i . Since |S| = Õ(k/α),

Hoeffding’s inequality implies that with probability at least 1 − δ, at least α/2 fraction of S are
drawn from D+

i and no more than 3α/2 fraction of S are drawn from D+
i , which also implies that

at least α/2 fraction of S are drawn from D−
i since 1− α ≥ α. Thus for y ∈ {±1}, there are Õ(k)

examples in S with label y. Given this happens, we apply VC-inequality over distribution D+
i and

D−
i . That is to say, for y ∈ {±1}, with probability at least every hypothesis hi ∈ H that correctly

labels S has an error at most 1/3 with respect to h∗ over Dy
i . This suffices to show d(hi, y) ≥ α/2

for y ∈ {±1}. Because assuming d(hi, y) < α/2, then a random example drawn from Di with have

18

Algorithm 4 LearnK-Interval (Efficient co-training k intervals)

Input: A sample access to D, a label query oracle, accuracy parameter ϵ ∈ (0, 1), confidence
parameter δ ∈ (0, 1)
Output: A hypothesis ĥ with error err(ĥ) < ϵ with probability at least 1− δ
Draw Õ(k/α) examples from D and query their labels. Over X1, X2, construct initial hypothesis
pair (h11, h

1
2) as follows.

For i ∈ [2], let Qi ⊆ Xi be the queried examples. Repeat the following procedure until no positive
examples are in Qi

1. Find xai , the first positive example in Qi and xbi the smallest negative example in Qi

such that x−i > x+i
2. Denote by I, the set of positive examples in Qi between xai and xbi (including xai).
3. Create a new interval conv(I) for h1i and delete I from Qi

Write h1i =
⋃

j=1 I
1
ij . (I

1
ij ordered by position from left to right)

COUNTT ← 0, COUNTU ← 0
n = poly(1/(λϵ), log(1/δ))
for t = 1, 2, . . . do

Draw example x(t) = (x
(t)
1 , x

(t)
2) ∼ D

if COUNTT < n then
COUNTU ← COUNTU + 1, if ht1(x

(t)
1) ̸= ht2(x

(t)
2).

COUNTT ← COUNTT + 1 and enter next round
end if
if COUNTT ≥ n and COUNTU

COUNTT
< λϵ

8 then

Return (ht1, h
t
2).

end if
{Check if the current hypothesis is good enough}
if ht1(x

(t)
1) ̸= ht2(x

(t)
2) then

Query the label of x(t)

if y(x(t)) = 1 and is misclassified by hti then

Find j such that x
(t)
i lies between Itij and Iti(j+1) and modify htij as follows:

1. If conv(Itij ∪ {x
(t)
i }) contains no negative examples queried before, Itij ← conv(Itij ∪

{x(t)i }), otherwise;
2. If conv(Iti(j+1) ∪ {x

(t)
i }) contains no negative examples queried before, Iti(j+1) ←

conv(Iti(j+1) ∪ {x
(t)
i });

3. Otherwise, create {x(t)i } as a new interval for hti.
end if
if y(x(t)) = 0 and is misclassified by hti then
Find the interval Itij that contains x(t) and modify hti by dividing Itij into two intervals

end if
COUNTT ← 0, COUNTU ← 0

end if
end for

19

a probability at least 1− α/2 to be labeled by y. However,

Pr
x∼Di

(hi(x) = 1) = α Pr
x∼D+

i

(hi(x) = 1) + (1− α) Pr
x∼D−

i

(hi(x) = 1) ≤ α+ (1− α)/3 < 1− α/2.

Pr
x∼Di

(hi(x) = −1) = α Pr
x∼D+

i

(hi(x) = −1) + (1− α) Pr
x∼D−

i

(hi(x) = 1) ≤ α/3 + 1− α < 1− α/2,

which gives a contradiction.

Claim B.2 (Structure of the hypothesis). For every t ≥ 1, i ∈ [2], hypothesis hti = ∪jItij maintained
by Algorithm 4 satisfies the following properties

• For each j, the endpoints of Itij are defined by two positive examples x
(t1)
i , x

(t2)
i that were

queried by Algorithm 4.

• For each j, if some example x
(t1)
i ∈ Itij was queried by Algorithm 4, then x

(t1)
i is a positive

example.

• For each j, there is at least one negative example and no positive example that was queried
by Algorithm 4 in the area between intervals Itij and Iti(j+1).

In particular, if h∗i is defined by ℓ intervals, then the above properties ensure each hti is also defined
by at most ℓ intervals.

Proof of Claim B.2. We prove Claim B.2 by induction. Let I∗i1, . . . , I
∗
iℓ be the intervals that define

h∗i . Let S0
i ⊆ Xi be the initial set of examples that we use to construct the initial hypothesis

h0i = ∪jI0ij . The three properties in the statement of Claim B.2 are clearly satisfied by h0i due to
Algorithm 4. Now suppose the three properties are satisfied by hti, we show they are also satisfied

by ht+1
i . We only need to consider the case when ht+1

i is obtained based on an example x
(t)
i that is

misclassified by hti, because otherwise hti will not be changed.

If some negative example x
(t)
i is predicted positive by hti, then it must be the case that for some

j, x
(t)
i ∈ Itij . By induction x

(t)
i is the first negative example in Itij that is queried by Algorithm 4.

Let x
(t1)
i < x

(t)
i < x

(t2)
i ∈ Itij be two positive examples that are closest to x

(t)
i and were queried by

Algorithm 4. To obtain ht+1
ij , Algorithm 4 will cut Itij into two intervals and set up x

(t1)
i , x

(t2)
i to be

endpoints of the new intervals. So the first two properties still hold. Furthermore, x
(t)
i is the only

queried point between the two intervals, so the third property also holds.

If some positive example x
(t)
i is predicted negative by hti, then such an x

(t)
i must lie between

some Itij and Iti(j+1). According to Algorithm 4, hti could be modified in different ways. In the

first case, one of the two intervals, assuming this is Itij without loss of generality, will enlarge its

boundary to x
(t)
i . When this happens, there must be no negative examples queried between x

(t)
i

and the original boundary of Itij . By induction, we know the three properties still hold. In the

second case, we insert {x(t)i } itself as a new interval, because enlarging either Itij or Iti(j+1) will cause
inconsistency. By induction, the three properties still hold.

Finally, we show that once the three properties hold, the hypothesis hti cannot be defined by
too many intervals. We notice that each interval Itij is created if it touches some target interval

I∗ig (some x
(t)
i ∈ I∗ig ∩ Itij is queried) . But on the other hand, each target interval I∗ig cannot have

intersections with more than one Itij because otherwise, I∗ig will contain some negative example.
Since there are at most ℓ target intervals to be learned, we know that as long as the three properties
hold, hti is defined by at most ℓ intervals.

20

Given the structure of the hypothesis maintained by Algorithm 4, we will next give some
structural results for err−(h

t
i) and err+(h

t
i). We will start with the negative error err−(h

t
i).

Claim B.3. For t ≥ 1, i ∈ [2] and for every j, if x
(t)
i ∈ N∗

ij , a negative example is queried by

Algorithm 4 then for every t′ > t, ht
′
i will not misclassify any example in N∗

ij .

Proof of Claim B.3. Without loss of generality, we assume x
(t)
i ∈ N∗

ij is the first example queried in
N∗

ij by Algorithm 4. We first notice that for every g ≥ 0, the boundaries of Itig cannot lie in N∗
ij by

the first property in the statement of Claim B.2. In other words, N∗
ij must either be contained in

some interval Itig or be contained in the area between some intervals Itig and Iti(g+1). By the second

property in the statement of Claim B.2, for each g, Itig will not contain a queried example with a

negative label, which implies that after querying x
(t)
i , N∗

ij cannot be contained in any Itig and must
lie in between two intervals Itig and Iti(g+1). This implies that after round t, every example in N∗

ij

will be predicted as negative.

Given Claim B.3, we will analyze how err−(h
t
i) will change if a negative example misclassified

by hti is queried.
By the first property of Claim B.2, we know that each for every t and for every j ∈ [k], there

must be some g ∈ [k] such that N∗
ij must either lie entirely in some interval Itig or line between two

intervals Itig and Iti(g+1).

In the first case, hti will predict every example in N∗
ij incorrectly and thus N∗

ij will contribute
Prx∼D−

i
(x ∈ N∗

ij) to err−(h
t
i). For simplicity, we denote by N t

i the set of N∗
ij of this kind. In the

second case, htij will not predict any example in N∗
ij incorrectly and N∗

ij contributes 0 to err−(h
t
i).

Thus,

err−(h
t
i) =

∑
N∗

ij∈Nt
i

Pr
x∼D−

i

(x ∈ N∗
ij) .

By Claim B.3, we know that in a single round if hti makes a mistake at N∗
ij , then after

that round, N∗
ij will be perfectly classified then err−(h

t
i) drops additively by Prx∼D−

i
(x ∈ N∗

ij).

Given this, in each round, we define a random variable Bt
i as the indicator of the event that

err−(h
(t+1)
i) ≤ (1− 1/(2k))err−(h

(t+1)
i).

On the other hand, however, we point out that although when some x
(t)
i ∼ D−i is found to be

misclassified err−(h
t
i) will not increase, it would be the case that err+(h

t
i) increases instead. This is

because example x
(t)
i would cut some interval Itij into two pieces, in which cases some area contained

in Itij would not be predicted positive by h
(t+1)
i . Let B̃i

t
be the event that err+(h

t
i) increases after

round t. We notice that B̃i
t
will happen at most k + 1 times because it will happen only when a

negative example x
(t)
i is queried and by Claim B.3, such events would happen only at most k + 1

times. For simplicity, we denote by (B′
i)
t := Bt

i + B̃i
t
. The above discussion gives the following

claim for the change of err−(h
∗
i).

Claim B.4. For t ≥ 1 and i ∈ [2],

Pr
x(t)∼D

(
(B′

i)
t = 1 | x(t)is queried, hti(x(t)) = 1, h∗(x(t)) = −1

)
≥ λ

8
.

21

Proof of Claim B.4. We will first show the following fact. Let xi ∼ D−
i |x∈Nt

i
, with probability at

least 1/4, xi ∈ N∗
ij with Prx∼D−

i |
x∈Nt

i

(x ∈ N∗
ij) ≥ 1/(2k). We prove this by contradiction. Assuming

instead the event happens with a probability less than 1/4, since there are at most k + 1 different
N∗

ij , we have

1 =
∑

N∗
ij∈Nt

i

Pr
x∼D−

i |
x∈Nt

i

(x ∈ N∗
ij) <

1

4
+

k + 1

2k
≤ 1, (3)

which gives a contradiction. In particular, if x
(t)
i falls into some N∗

ij that satisfies the above condition,
and we query it, then it must have (B′

t) = 1. Thus, we have

Pr
x(t)∼D

(
(B′

i)
t = 1 | x(t)is queried, hti(x(t)) = 1, h∗(x(t)) = −1

)
=

Prx(t)∼D

(
(B′

i)
t = 1, x(t)is queried, hti(x

(t)) = 1, h∗(x(t)) = −1
)

Prx(t)∼D

(
x(t)is queried, hti(x

(t)) = −1, h∗(x(t)) = 1
)

≥
Prx(t)∼D−

(
(B′

i)
t = 1, x(t)is queried, hti(x

(t)) = 1, h∗(x(t)) = −1
)

Prx(t)∼D−
i

(
hti(x

(t)) = 1
)

=
Prx(t)∼D−

(
(B′

i)
t = 1, hti(x

(t)) = 1, ht3−i(x
(t)) = −1

)
Prx(t)∼D−

i

(
hti(x

(t)) = 1
)

≥
λPrx(t)∼D−

(
(B′

i)
t = 1, hti(x

(t)) = 1
)

2Prx(t)∼D−
i

(
hti(x

(t)) = 1
) =

λ

2
Pr

xi∼D−
i |

x∈Nt
i

((B′
i)
t) ≥ λ

8
.

Here the second inequality is followed by the λ-weak dependence and Claim B.1 and the last
inequality is followed by the property we proved at the beginning.

We next analyze err+(h
t
i) in a similar way.

Claim B.5. For t ≥ 1, i ∈ [2] and j ∈ [k], let x ∼ Di conditioned on x ∈ [l∗ij ,
ˆl∗tij]. With probability

at least 1/2, we have

Pr
x′∼Di|x′∈I∗

ij

(x′ ∈ [l∗ij , x])) ≤
1

2
Pr

x′∼Di|x′∈I∗
ij

(x′ ∈ [l∗ij ,
ˆl∗tij]),

where the randomness only comes from x. The same statement holds if we replace l∗ij ,
ˆl∗tij by

r∗ij , r̂
∗t
ij accordingly.

Proof of Claim B.5. Denote by xm the median of the interval [l∗ij ,
ˆl∗tij] under the distribution

Di |[l∗ij , ˆl∗tij]. That is Prx∼Di|
[l∗
ij

, ˆl∗tij]
(x < xm) = 1/2. For any x < xm, we have

Pr
x′∼Di|x′∈I∗

ij

(x′ ∈ [l∗ij , x])) = Pr
x′∼Di|

[l∗
ij

, ˆl∗tij]

(x′ < x) Pr
x′∼Di|x′∈I∗

ij

(x′ ∈ [l∗ij ,
ˆl∗tij]) ≤

1

2
Pr

x′∼Di|x′∈I∗
ij

(x′ ∈ [l∗ij ,
ˆl∗tij]).

Thus, with probability at least 1/2 we will shrink the probability mass of [l∗ij ,
ˆl∗tij] by a factor of

2.

22

The analysis of the change of err+(h
t
i) will be based on Claim B.5. We first introduce the

notation of type 1 error and type 2 error. Consider a fixed I∗ij . By the third property of Claim B.2,
we know that for each t ≥ 0, each I∗ij can only touch at most one Itig. In other words, each I∗ij either
entirely lies in some Itig or cross boundaries of one Itig or lie in between two intervals Itig and Iti(g+1).

In the first case, I∗ij contributes no error. In the second case, I∗ij can cross either one boundary
of some interval Itig or two boundaries of some interval I∗ig. We say such I∗ij has a type 1 error and
the error it contributes to err+(h

t
i) is

E1(I∗ij) = Pr
x∼D+

i

([l∗ij ,
ˆl∗tij]) + Pr

x∼D+
i

([r̂∗tij , r
∗
ij])

(and only one of the two terms if only the left or right boundary crosses the boundary of some Itig).

In the third case, we say I∗ij has type 2 error and it contributes err+(h
t
i), E

2(I∗ij) = Prx∼D+
i
(I∗ij)

because no examples in this region has been queried.
As we discussed above, type 1 error and type 2 error are defined by at most 2k region, each of

which is an interval. For simplicity, for each t and i ∈ [2], we will use Rt
ij , j ∈ [2k] to denote these

intervals, ordered from left to right and we use Rt
i to denote their union. Based on these notations,

we will discuss how the err+ changes when a positive example x(t) is queried. If x
(t)
i ∈ Rt

ij for some
j such that Rt

ij causes type 1 error, then according to Claim B.5, we know that with a constant
probability, the error contribution of Rt

ij will drop by a factor of 2. To capture such progress made

by Algorithm 4, we define At
i to be indicator of the event err+(h

(t+1)
i) ≤ (1− 1/(8k))err+(h

(t+1)
i). If

x
(t)
i ∈ Rt

ij for some j such that Rt
ij causes type 2 error, the error contribution of Rt

ij will not change

but the type of error will instead become type 1. Similarly, define Āi
t
to be the indicator of the

event that a queried example falls into some region Rt
ij that causes a type 2 error. In particular,

Āi
t
can happen at most k times, because as long as an example in some I∗ij is queried, I∗ij will never

cause any type 2 error. We also observe that after we query some positive example err−(h
t
i) might

also increase because by enlarging some Itij , I
t
ij might cover some N∗

ij where no negative example has

been queried. We define such an event to be Ãi
t
and similarly, Ãi

t
can also happen at most k + 1

times. Now, let (A′
i)
t := At

i + Ãi
t
+ Āi

t
. The main structural result for err+(h

t
i) can be summarized

via the following claim.

Claim B.6. For t ≥ 1 and i ∈ [2],

Pr
x(t)∼D

(
(A′

i)
t ≥ 1 | x(t)is queried, hti(x(t)) = −1, h∗(x(t)) = 1

)
≥ λ

16
.

The proof of Claim B.6 is similar to that of Claim B.4.

Proof of Claim B.6. Notice that let xi ∼ D+
i |x∈Rt

i
, with probability at least 1/4, xi ∈ Rt

ij such that

Prx∼D+
i |

x∈Rt
i

(x ∈ Rt
ij) ≥ 1/(4k). This observation can be proved in the same way as (3). When this

happens, if Rt
ij causes type 1 error, we know from Claim B.5, with another probability of 1/2, the

contribution of Rt
ij will shrink by a factor of 2. If Rt

ij causes type 2 error, we know that Ãi
t
= 1.

Based on this, we have

23

Pr
x(t)∼D

(
(A′

i)
t ≥ 1 | x(t)is queried, hti(x(t)) = −1, h∗(x(t)) = 1

)
=

Prx(t)∼D

(
(A′

i)
t ≥ 1, x(t)is queried, hti(x

(t)) = −1, h∗(x(t)) = 1
)

Prx(t)∼D

(
x(t)is queried, hti(x

(t)) = −1, h∗(x(t)) = 1
)

≥
Prx(t)∼D+

(
(A′

i)
t ≥ 1, x(t)is queried, hti(x

(t)) = −1, h∗(x(t)) = 1
)

Prx(t)∼D+
i

(
hti(x

(t)) = −1
)

=
Prx(t)∼D−

(
(A′

i)
t ≥ 1, hti(x

(t)) = −1, ht3−i(x
(t)) = 1

)
Prx(t)∼D−

i

(
hti(x

(t)) = −1
)

≥
λPrx(t)∼D−

(
(A′

i)
t ≥ 1, hti(x

(t)) = −1
)

2Prx(t)∼D+
i

(
hti(x

(t)) = −1
) =

λ

2
Pr

xi∼D+
i |

x∈Rt
i

((A′
i)
t) ≥ λ

16
.

Here the second inequality holds because of the λ-weak dependence and Claim B.1.

Proof of Theorem 4.2. We first show the correctness of the algorithm. Notice that every time we
obtain a new hypothesis pair ht, it will not be changed before we query the next example when at
least one of hti will make a mistake on that example.

Now we consider a fixed pair of hypotheses ht = (ht1, h
t
2). Upon we obtain ht, we maintain two

counters, COUNTT , which counts the total number of examples we have seen since the last update,
and COUNTU , the number of examples that are predicted differently by ht. We say ht fails to pass
the test, if ht is not output when COUNTT > n.

Notice that by Algorithm 4, each time we makes a modification, hti will not misclassify any

example x
(t′)
i that we have queried previously. By Claim B.1, we know that with high probability

∀t and ∀i ∈ [2], we have d(hti, 1) ≥ α/2 and d(hti,−1) ≥ α/2. We know from Lemma 2.3 that if
d(ht, h∗) > ϵ then we must have unl(ht) > λϵ/4 because ht is guaranteed to be far from any constant
hypothesis.

Let S be a set of n = poly(1/(λϵ), log(1/δ)) unlabeled examples drawn i.i.d. from D. By
Hoeffding’s inequality, we have

Pr
S∼Dn

(∣∣∣ûnl(ht)− unl(ht)
∣∣∣ ≥ λϵ

8

)
≤ 2e

(
−λ2ϵ2n

64

)
≤ exp(−Ω(log 1/δ

ϵ
)).

This implies that if err(ht) > ϵ, with high probability ûnl(ht) > λϵ/8 and will fail to pass the test.
On the other hand, if unl(ht) < λϵ/16, then with high probability ûnl(ht) < λϵ/8 and will pass the
test and returned. To finish showing the correctness of Algorithm 4 it remains to show that the
method of updating hypotheses used by Algorithm 4 can quickly drop unl(hti) to O(λϵ) so that a
good hypothesis will be output finally. If we can prove this then we can also directly obtain the
label complexity and the number of unlabeled examples used by Algorithm 4.

For i ∈ [2] and y ∈ {±1}, we define (eyi)t be the indicator of the event hti(x
(t)
i) ̸= y, ht3−i(x

(t)
i) = y

and define (em)t be the indicator of the event argmaxi,y{Prx(t)∼D((eyi)t|i∈[2],y∈{±1})}. In time round

t, if x(t) is queried, we say such a query is good if (em)t = 1 and the following condition is satisfied.
Suppose (em)t is achieved by (eyi)

t. If y = +, then a good query requires (A′
i)
t ≥ 1. If y = −, then

a good query requires (B′
i)
t ≥ 1. Notice that

Pr
x(t)∼D

((em)t | x(t) is queried) =
Prx(t)∼D

(
(em)t

)∑
i,y Prx(t)∼D ((eyi)

t)
≥ 1

4
. (4)

24

(5) together with Claim B.4 and Claim B.6 implies that every time we make a query, with probability
at least λ/64, such a query is good. We claim that if at some point T we have made Ω(k2 log(1/(λϵ)))
good queries, then before time T there must be some time t such that err(ht) < O(λϵ). Notice

that during the learning process, when events Ãi
t
, Āi

t
, B̃i

t
happen, err(ht) might increase. In fact,

they are the only events that can make err(ht) increase. However, according to Claim B.2 and
Claim B.3, these events happen deterministically at most O(k) times. This implies if we have made
Ω(k2 log(1/(λϵ))) good queries, then there must be Ω(k log(1/(λϵ))) successive good query such

that Ãi
t
, Āi

t
, B̃i

t
do not happen at the time we make the good queries. In this case, after each good

query has been made, Prx(t)∼D((em)t) deterministically drop by a factor of (1 − 1/O(k)). Thus,
after these good queries have been made we must have

unl(ht) ≤ 4 Pr
x(t)∼D

((em)t) ≤ O(λϵ),

in which case ht will be output. Notice that

Pr
x(t)∼D

((em)t | x(t) is queried) =
Prx(t)∼D

(
(em)t

)∑
i,y Prx(t)∼D ((eyi)

t)
≥ 1

4
. (5)

Notice that (5) together with Claim B.4 and Claim B.6 implies that every time we make a query,
with probability at least λ/64, such a query is good. Hoeffding’s inequality implies that if we make
Õ(k2 log(1/(λϵ))/λ) queries after the initialization step, then with probability 1−poly(δ), a constant
fraction of them are good queries. This finishes the proof of Theorem 4.2.

C Learning Homogeneous Halfspaces

In this section, we provide the algorithm and proof establishing Theorem 4.3. We will use hw : Rd →
{±1} for a unit vector w to denote the homogeneous LTF defined as hw(x) = sign(⟨w, x⟩) and use
x ∼u S to denote that x is sampled uniformly at random from a set S. The high-level idea of the
algorithm is the following. Instead of directly learning on the original domain X = X1 ×X2 where
the halfspaces do not have “margins”, we will apply the technique of Forster decomposition on each
domain X1 and X2. Such a technique gives a transformation mapping from X to X ′ = X ′

1 ×X ′
2.

After this transformation, at least 1/(4d) fraction of the examples will be correctly classified by

halfspaces with 1/
(
2
√
d
)
margins on either X ′

1 or X ′
2. Then our algorithm uses a modified version

of the perceptron algorithm, so that after at most roughly O(d log(d)) many queries to the oracle,
we learn a halfspace on X1 that will correctly classify those 1/(4d) fraction of examples that
has margins (this corresponds to a partial classifier in the original space X). We removed those
regions that have been classified by this partial classifier from our input distribution D by doing
rejection sampling. We repeat this process d log(1/ϵ) times until there is only ϵ/2 mass of the input
distribution remaining. Then we output a decision list of all the partial classifiers we get from each
iteration.

We start by introducing the following fact for Forster transformation from [DTK23].

Fact C.1 (Proposition 7.1 from [DTK23]). There is an algorithm that given a multiset S of n points
in Rd

∗ and ϵ > 0, runs in time polynomial of dn/ϵ, and with high probability returns a subspace
V ⊆ Rd with V ̸= 0 and a rank dim(V) linear transformation A : V → Rdim(V), such that for the

function fA(x)
def
= Ax/ ∥Ax∥2,

25

1. |S ∩ V | ≥ (n/d) dim(V).

2. The eigenvalues of 1
X∩V

∑
x∈X∩V fA(x)(fA(x))

⊺ are in [(1− ϵ)/ dim(V), (1 + ϵ)/ dim(V)].

We note that for any unit vector w ∈ Rd and its corresponding LTF hw, there must be a unit
vector w′ ∈ Rdim(V) where w′ = (A−1)

⊺
w/∥(A−1)

⊺
w∥2 such that for any x ∈ V , hw′(fA(x)) = hw(x).

Namely, Forster decomposition preserves the function class of homogeneous LTFs. Furthermore,
if we choose ϵ to be at most a sufficiently small constant, since Ex∼U(X∩V)

[
⟨w, fA(x)⟩2

]
is close

to 1. It is easy to see that at least |X ∩ V |/(4 dim(V)) ≥ |X|/(4d) many points in X satisfies

⟨w, fA(x)⟩ ≥ 1/
(
2
√
d
)
for any unit vector w. The above observations are summarized by the

following facts.

Fact C.2. Given a multiset S of n samples of x ∈ Rd and let fA be the Forster decomposition from
Fact C.1 performed on the samples in S for ϵ at most a sufficiently small constant. Conditioned on
the algorithm in Fact C.1 succeeds, the following holds:

1. Let w be any unit vector in Rd, there is a unit vector w′ ∈ Rdim(V) such that hw(x) = hw′(fA(x))
for any x ∈ V .

2. For any unit vector w ∈ Rdim(V), there is at least 1/(4d) fraction of the sample in S satisfies

x ∈ V and |⟨w, fA(x)⟩| ≥ 1/
(
2
√
d
)
;

Proof. To prove the first property, let w′ = (AA⊺)−1Aw/∥(AA⊺)−1Aw∥2. It is easy to see that for
any x ∈ V ,

hw′(fA(x)) = sign(⟨w′, fA(x)⟩) = sign(w⊺A⊺(AA⊺)−1Ax) = sign(w⊺x) = hw(x) ,

where the second from last equality follows from x ∈ V .
For the second property, notice that

E
x∼uS∩V

[⟨w, fA(x)⟩2] = w⊺ E
x∼uS∩V

[fA(x)(fA(x))
⊺]w ∈

[
3

4 dim(V)
,

5

4 dim(V)

]
.

We suppose there is less than 1/(4d) fraction of the sample in S satisfies x ∈ V and |⟨w, fA(x)⟩| ≥
1/
(
2
√
d
)
and prove by contradiction. From Fact C.1, we have |S ∩ V | ≥ (dim(V)/d)|S|, therefore,

Pr
x∼uS∩V

(
|⟨w, fA(x)⟩| ≥ 1/

(
2
√
d
))
≤ 1/(4 dim(V)) .

Since ⟨w, fA(x)⟩2 is bounded between [0, 1], we have

E
x∼uS∩V

[⟨w, fA(x)⟩2] ≤ 1/(4 dim(V)) +
1− 1/(4 dim(V))

4d
<

3

4 dim(V)
,

contradiction. This proves the second property.

Given a multiset S of examples (x1, x2) ∈ X1×X2 from the co-training problem. The algorithm
will apply the above Forster decomposition on both the set of x1 and x2. This gives two mappings
fA1 : V1 → Rdim(V1) and fA2 : V2 → Rdim(V2) where V1, V2 ̸= 0 are subspaces of Rd. Then we will use
the margin perceptron algorithm (a variant of which is shown in [DV04]) described in the following
fact. The version we use here is from [DKTZ23].

26

Algorithm 5 Co-training Halfspaces without Margin with Label Queries

Input: Let (X,H) be a learning problem where X = Rd × Rd and H be the class of homo-
geneous LTFs satisfies the co-training assumption with h∗ being the true concept.
Let D be a distribution over X that satisfies λ-weak dependence and let D1 be the
marginal distribution of x1 satisfies the α-reflective symmetry, namely, for any x1 ∈ X1,
D(x1)/D(−x1) ∈ [α, 1/α] for some α ≤ 1. The algorithm is given sample access to
distribution D and access to a label oracle. Let ϵ be the target accuracy and δ be the
target failure probability.

Output: The algorithm uses at most Õ(d2 log(ϵ) log(δ)) many queries to the label oracle,
and With probability 1 − δ, it returns a hypothesis ĥ : X → ±1 such that

Pr(x1,x2)∼D

(
ĥ(x1, x2) ̸= h∗(x1, x2)

)
≤ ϵ.

1. Let T = cd log(1/ϵ) where c is a sufficient large positive constant. This will be the number
of iterations we run the following steps of the algorithm.

2. Let S be a multiset of m = c log(T/δ)d4 many examples of (x1, x2) ∼ D where c is a
sufficiently large constant. Apply the Forster decomposition in Fact C.1 to the sets of x1 and
x2 in S respectively. This gives two mappings fA1 : V1 → Rdim(V1) and fA2 : V2 → Rdim(V2)

where V1, V2 ̸= 0 are subspaces of Rd.

3. Let DfA1
,fA2

be the distribution of (fA1(x1), fA2(x2)) for (x1, x2) ∼ D conditioned on

x1 ∈ V1 and x2 ∈ V2. Let E be a multiset cd2log(T/δ)/(αλϵ2/d)2 (c is a sufficiently
large constant) many samples of (x′1, x

′
2) ∼ DfA1

,fA2
. We then apply the subroutine

Algorithm 6 on E and distribution DfA1
,fA2

, which with probability 1− δ/(2T) will return

a unit vector ŵ1 ∈ Rdim(V1) as a partial classifier on X1, such that for its classifying region

R
def
=
{
x1 ∈ X1 : x1 ∈ V1 ∧ |⟨ŵ1, fA1(x1)⟩| ≥ 1/

(
2
√
d
)}

, it satisfies the following properties:

(a) Pr(x1,x2)∼D (x1 ∈ R) ≥ 1/(5d); and

(b) Pr(x1,x2)∼D (x1 ∈ R ∧ hŵ(x1) ̸= h∗(x1)) ≤ ϵ/(2T).

Namely, this implies that this partial classifier classifies the region R which has at least
1/(5d) mass and makes at most ϵ/(2T) error in this region.

4. Let ŵ
(1)
1 , · · · , ŵ(t)

1 be the partial classifiers we get from all previous t iterations and
let R1, · · ·Rt be their corresponding classifying regions. If the unclassified mass
Pr(x1,x2)∼D

(
x1 ̸∈

⋃t
i=1Ri

)
> ϵ/2, then let D′ be the distribution of (x1, x2) ∼ D con-

ditioned on x1 ̸∈
⋃t

i=1Ri and repeat step 2 on the remaining mass D′ (notice that we can
always rejection sampling D′ efficiently). Otherwise, we output the following decision list
on x1:
If x1 ∈ R1, output hŵ(1)

1

(x1),

elseif x1 ∈ R2, output hŵ(2)
1

(x1),

elseif . . .

27

Algorithm 6 Subroutine for Co-training Partial Classifier using Label Queries

Input: Let E be a multiset of cd2 log(T/δ)/(αλϵ2/d)2 many unlabeled examples (x1, x2) ∈
Rd1 × Rd2 and D be the distribution DfA1

,fA2
from Algorithm 5.

Output: The algorithm uses at most O(d log(d) log(T/δ)) many queries to the oracle and output
two unit vectors ŵ1 ∈ Rd1 and ŵ2 ∈ Rd2 such that at most c′αλϵ2/d fraction (for
sufficiently small constant c′ depending only on c) of the samples (x1, x2) ∈ E satisfies
the margin consistency condition w.r.t. ŵ1 and ŵ1 defined as:

If |⟨ŵ1, x1⟩| ≥ 1/
(
2
√
d
)
and |⟨ŵ2, x2⟩| ≥ 1/

(
2
√
d
)
, then hŵ1(x1) = hŵ2(x2).

1. We will initialize w1 ∈ Rd1 and w2 ∈ Rd2 as two random vectors drawn uniformly from the
unit sphere.

2. If there is at most c′αλϵ2/d fraction of samples in E that does not satisfy the margin
consistency condition w.r.t. w1 and w2, then, we output w1 and w2. Otherwise, we sample

at most O
(
log(d) log(T/δ)d

αλϵ2

)
many samples of (x1, x2) from D, and query the label when we

see a sample (x1, x2) that does not satisfy the margin consistency condition. If there is no
such sample, then output failure. Let (x1, x2) be this sample that we queried the label, then
either hw1(x1) or hw2(x2) is not the correct label. We then use the margin perceptron in
Fact C.3 to update either w1 or w2. We repeat this step cd log(d) many times where c is a
sufficiently large constant.

3. If there is still any sample in E that does not satisfy the margin consistency, we go back to
step 1 and try a different pair of random unit vectors. We repeat this at most c log(T/δ)
many times where c is a sufficiently large constant then output failure.

28

Fact C.3. [Lemma 16 of [DKTZ23]] Let w∗, w(0) ∈ Rd be unit vectors such that ⟨w∗, w(0)⟩ ≥ α
for some α > 0 and let x1, x2, · · · be any sequence of unit vectors in Rd. Assume the following:
w(t+1) ← w(t) − x(t)⟨x(t), w(t)⟩ and let t0 ∈ Z+ so that for all t ∈ Z+ with t ≤ t0, |⟨x(t), w(t)⟩| ≥
β∥w(t)∥2 and (⟨w(t), x(t)⟩)(⟨w∗, x(t)⟩) < 0. Then, t0 ≤ (2/β2) log(1/α).

Now we are ready to describe the pseudocode (see Algorithm 5) for the algorithm in Theorem 4.3.
We now prove the main result of this section, Theorem 4.3.

Proof for Theorem 4.3. We first prove the correctness of the subroutine Algorithm 6. Notice that
due to Fact C.2, we know there must be a pair of unit vectors w∗

1 and w∗
2 such that for all (x1, x2) ∈ E,

hw∗
1
(x1) = hw∗

2
(x2) = h∗(x1, x2), where h∗ is the true classifier. Then notice that for random unit

vector initialization w1, w2, there is Ω(1) probability that ⟨w1, w
∗
1⟩ = Ω(1/d) and ⟨w2, w

∗
2⟩ = Ω(1/d).

Since we will try c log(T/δ) many pairs of random initialization, with probability at least 1−δ/(10T),
one pair of them will satisfy the correlation. Therefore, given both correlations are Ω(1/d), according
to Fact C.3, we can only make at most O(d log(d)) many updates until all samples in E satisfy the
margin consistency condition. Furthermore, in each iteration, since there is at least c′αλϵ2/d (where
c′ is a sufficiently small constant depending on c) fraction of samples in E that does not satisfy the
margin consistency. Using VC inequality, we know that each sample from DfA1

,fA2
does not satisfy

the consistency condition with probability Ω(αλϵ2/d). Therefore, accumulated over all iterations,
the probability that we do not find an example that does not satisfy the consistency condition
and output failure is at most O(δ/T) for each call of Algorithm 6. This proves the correctness of
Algorithm 6.

Now we prove the correctness of Algorithm 5. We first prove the following observations for Step
3 in Algorithm 5.

Fact C.4. In Step 3 of Algorithm 5, letD be the original input distribution andD′ be the distribution

for the unclassified mass in this tth iteration. LetRi
def
=
{
x1 ∈ X1 : x1 ∈ V1 ∧ |⟨ŵ(i)

1 , fA1(x1)⟩| ≥ 1/
(
2
√
d
)}

where ŵ
(i)
1 is the ŵ1 in ith iteration. Then with probability at least δ/(2T), the unit vector ŵ

(t)
1 will

satisfy:

(a) Pr(x1,x2)∼D′ (x1 ∈ Rt) ≥ 1/(5d); and

(b) Let the error region for partial classifier h
ŵ

(t)
1

be

Rerror
def
=

{
x1 ∈ X1 : x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1 ∧ h
ŵ

(t)
1

̸= h∗(x1)

}
,

then Pr(x1,x2)∼D (x1 ∈ Rerror) ≤ ϵ/(2T).

Proof. For Property (a), it is easy to see that any such regionRt can be expressed as a degree-2 polyno-
mial threshold function and, therefore has VC-dimension at mostO(d2). Given Pr(x1,x2)∼uS (x1 ∈ Rt) ≥
1/(4d) (this follows from Fact C.2) and |S| = c log(T/δ)d4, we have that with probability at least
δ/(10T),

Pr
(x1,x2)∼D′

(x1 ∈ Rt) ≥ 1/(4d)− 1/(30d) ≥ 1/(5d) .

This proves Property (a).
For Property (b), we assume Pr(x1,x2)∼D (x1 ∈ Rerror) ≥ ϵ/(2T) and prove by contradiction.

We defined the classifying region from D on X1 as C1
def
= {x1 : x1 ̸∈

⋃t−1
i=1 Ri ∧ x1 ∈ Rt}, and

on X2 as C2
def
=
{
x2 ∈ X2 :

∣∣∣〈ŵ2
(t), fA2(x2)

〉∣∣∣ ≥ 1/
(
2
√
d
)}

where ŵ2
(t) is the ŵ2 in tth iteration.

29

Furthermore, let C+
1 =

{
x ∈ C1 : hŵ(t)

1

(fA1(x1)) = 1
}

(similarly for C−
1 , C

+
2 and C−

2). Same as

what we have shown above, we have PrD′(C2) ≥ 1/(5d), therefore PrD(C2) ≥ Ω(ϵ/d). WLOG,
this implies PrD

(
C+
2

)
≥ Ω(ϵ/d). Then since C+

1 ∩Rerror and C−
1 ∩Rerror are symmetric, we have

PrD
(
C−
1 ∩Rerror

)
≥ αϵ. Then from the λ-weak dependence condition,

Pr
(x1,x2∼D)

(
x1 ∈ C−

1 ∩Rerror ∧ x2 ∈ C+
2

)
≥ λαϵ2/d .

This implies

Pr
(x1,x2)∼DfA1

,fA2

(
h
ŵ

(t)
1

(fA1(x1)) = −1 ∧ h
ŵ

(t)
2

(fA2(x2)) = +1 ∧ x1 ∈ C1 ∧ x2 ∈ C2

)
≥ λαϵ2/d .

However, from the correctness of subroutine Algorithm 6, we know that there must be a corresponding
unit vector ŵ2 ∈ Rdim(V2) such that at most cαλϵ2/d fraction of samples in E does not satisfy
the margin consistency w.r.t. ŵ1 and ŵ2. Combining this with the fact that this region has VC-
dimension at most O(d2). We have such a region can have mass at most cαλϵ2/d for a sufficiently
small constant c with probability 1 − δ/(100T). This proves that there is a contradiction with
probability 1− δ/(100T), therefore, property (b) holds with such probability.

Then we show that the rejection sampling for DfA1
,fA2

in Step 3 is efficient. Still, let D be
the original input distribution and D′ be the distribution for the unclassified mass in tth iteration.
Notice that for any sample from D to pass the rejections sampling, we need x1 ̸∈

⋃t−1
i=1 Ri and

x1 ∈ V1 and x2 ∈ V2. According to Fact C.2, we have w.h.p

Pr
(x1,x2)∼D′

(x1 ∈ V1) = Pr
(x1,x2)∼D′

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1

)
≥ 1/(5d) .

Since D′ comes from at least Ω(ϵ) mass of D, we have

Pr
(x1,x2)∼D

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1

)
= Ω(ϵ/d) .

Then similarly for x2, we also have

Pr
(x1,x2)∼D

(x2 ∈ V2) ≥ Pr
(x1,x2)∼D

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x2 ∈ V2

)
= Ω(ϵ/d) .

According to λ-weak dependence property of D, we have the sampling efficiency from D is at least

Pr
(x1,x2)∼D

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1 ∧ x2 ∈ V1

)
= Ω(ϵ2/d2) .

This proves that the rejection sampling is efficient.
Given the above facts, since each iteration classifies Ω(1/d) fraction of the remaining mass,

it only takes T = O(d log(1/ϵ)) many iterations to reduce the unclassified mass to at most ϵ/2.
Furthermore, it is easy to see the output decision list will incur error at most Tϵ/(2T) ≤ ϵ/2
with failure probability accumulated from each iteration to be at most δ. Therefore, the output
hypothesis has an error at most ϵ with failure probability at most δ. This completes the proof.

30

D The Label Complexity Obtained by [WZ08] Is Not Sufficient
for Learning

The work in [WZ08] studied a different algorithm that combines co-training with pool-based active
learning. They claim that if distribution D satisfies the λ-expansion assumption they defined, then
every hypothesis class with VC dimension d can be learned by Algorithm 7 with Õ(d log(1/ϵ)/λ)
labeled examples. However, we explain here that the result obtained by Algorithm 7 does not make
sense because the distributional assumption defined in their paper contradicts the assumption of
co-training and can not be satisfied by any distribution in co-training. Furthermore, we will give
very simple counter-examples, showing that the label complexity Õ(d log(1/ϵ)/λ) is not enough for
Algorithm 7 to learn a good hypothesis.

Algorithm 7 Algorithm in [WZ08]

Input:

Unlabeled dataset U = {x(1), x(2), · · · } where each example x(t) is given as a pair
(
x
(t)
1 , x

(t)
2

)
.

Process:
Ask the user to label m0 unlabeled examples drawn randomly from D to compose the labeled
dataset L.
for i = 0, 1, · · · s do

1. Train two classifier h
(i)
1 and h

(i)
2 consistent with L in each view, respectively;

2. Apply h
(i)
1 and h

(i)
2 to the unlabeled dataset U to find the contention points Qi;

3. Ask the user to label mi+1 unlabeled examples drawn randomly from Qi, then add them
into L and delete from U .

end for
Output:

hfinal = combine(h
(s)
1 , h

(s)
2)

In their paper, they make the following assumption on the underlying distribution.

Definition D.1. A distribution D satisfies λ-expansion if for every S1 ⊆ X1 and for every S2 ⊆ X2

Pr
x∼D

(S1 ⊕ S2) ≥ λmin{ Pr
x∼D

(S1 ∧ S2), Pr
x∼D

(S̄1 ∧ S̄2)},

where (S1 ⊕ S2) means for an example pair x = (x1, x2) exactly one of i ∈ [2] satisfies xi ∈ Si. A
distribution D is λ-expanding with respect to hypothesis class H1 ×H2 if the above holds for all
S1 ∈ H1 ∩X1, S2 ∈ H2 ∩X2, where for j ∈ [2], Hj ∩Xj = {h ∩Xj | h ∈ Hj}.

They claim the following theorem based on their assumption.

Theorem D.2 (Theorem 1 in [WZ08]). For data distribution D λ-expanding with respect to
hypothesis class H1×H2, let ϵ, δ denote the final desired accuracy and confidence parameters. If s =
⌈ log(λ/8ϵ)log 1/C ⌉ and mi =

16
λ (4V log(16/λ)+2 log(8(s+1)/δ)), (i = 0, 1, . . . , s), Algorithm 7 will generate

a classifier with error rate no more than ϵ with probability 1− δ. Here V = max{V C(H1), V C(H2)}
and C = λ/4+1/λ

1+1/λ .

We first point out that the above result is not meaningful, because the λ-expansion assumption
they defined cannot be satisfied by any distribution in the co-training setting. Let h∗1, h

∗
2 be the

target hypothesis in the two views that are not constant. Let S1 := {x1 ∈ X1 | h∗1(x1) = 1} and

31

S2 := {x2 ∈ X2 | h∗2(x2) = 1}. Notice that for any distribution D and any hypothesis class H1, H2,
if D is λ-expanding with respect to H1 ×H2, then S1, S2 according to definition should satisfy

Pr
x∼D

(S1 ⊕ S2) ≥ λmin{ Pr
x∼D

(S1 ∧ S2), Pr
x∼D

(S̄1 ∧ S̄2)}.

However, according to the co-training assumption, every pair of examples (x1, x2) must have
the same label, while S1 ⊕ S2 implies that one of the xi is labeled positive by h∗i and the other
one is labeled negative by the target hypothesis. Thus, according to the co-training assumption,
Prx∼D(S1 ⊕ S2) = 0. On the other hand, min{Prx∼D(S1 ∧ S2),Prx∼D(S̄1 ∧ S̄2)} > 0 because the
target hypothesis is not constant. In conclusion, the only choice for λ is 0, which implies that the
algorithm for each round needs to query an infinite number of examples.

We remark that the notion of λ-expansion was originally defined in [BBY04]. In the original
definition, λ-expansion was only defined for D+, which is the distribution of D conditioned on the
label to be positive. A distribution D+ has λ-expansion if for every S1 ⊆ X+

1 , S2 ⊆ X+
2 ,

Pr
x∼D+

(S1 ⊕ S2) ≥ λmin{ Pr
x∼D+

(S1 ∧ S2), Pr
x∼D+

((X+
1 \ S1) ∧ (X+

2 \ S2))}.

The original definition of λ-expansion is significantly different from the definition used in [WZ08].
We now give counterexamples showing that such a label complexity is not sufficient to learn a good

hypothesis. The simplest counterexample can be obtained when the true label is unbalanced. We can
even assume the parameter λ = 1 in their bound. Then in the first round, mi = Θ(d+log(log(1/ϵ)/δ)).
Assume the target hypothesis only has a probability of 1/(2mi) to label an example to be negative.
(We remark that in this case α := 1/(2mi) ≫ ϵ when ϵ = o(1/d).) Then by Markov’s inequality,
with probability at least 1/2, the first m0 labeled examples are all positive. This implies that even
the constant hypothesis is consistent with all labeled examples and has a very low error. However,
after obtaining such a pair of hypotheses, the algorithm cannot continue, because no new examples
will be queried. Even if we do not consider such an extreme case, where the initial hypotheses are
constant, there are still other counterexamples. Assume the initial hypothesis hi has error 1% over
a random positive example but has error 100% over a random negative example. (Such cases can
happen, because there are no negative examples in the initial round, so there is no guarantee of the
prediction over a random negative example.) Under this assumption, every example queried by the
algorithm will be a positive example, and the algorithm makes no progress on learning the negative
examples.

32

	Introduction
	Our Contributions
	Related Work

	Notations and Preliminaries
	Co-Training via Online Classification
	Co-Training beyond Finite Mistake Bound
	Learning General VC-Classes in Exponential Time
	Co-Training k-Unions of Intervals
	Co-Training Homogeneous Halfspaces

	Label Efficient Co-Training of General VC-Classes via Online Learning
	Efficient Co-Training of k-Interval
	Learning Homogeneous Halfspaces
	The Label Complexity Obtained by wang2008multi Is Not Sufficient for Learning

